from flask import Flask, render_template, request, jsonify, Response, stream_with_context from google import genai from google.genai import types import os from PIL import Image import io import base64 import json app = Flask(__name__) GOOGLE_API_KEY = os.environ.get("GEMINI_API_KEY") client = genai.Client( api_key=GOOGLE_API_KEY, http_options={'api_version': 'v1alpha'}, ) @app.route('/') def index(): return render_template('index.html') @app.route('/free') def indexx(): return render_template('maj.html') @app.route('/solve', methods=['POST']) def solve(): try: image_data = request.files['image'].read() img = Image.open(io.BytesIO(image_data)) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() def generate(): mode = 'starting' try: response = client.models.generate_content_stream( model="gemini-2.0-flash-thinking-exp-01-21", config={'thinking_config': {'include_thoughts': True}}, contents=[ {'inline_data': {'mime_type': 'image/png', 'data': img_str}}, " Résous ça en français. Write you answer with rendering Latex." ] ) #Resous cette exercice. ça doit être bien présentable et espacé. je veux un jolie rendu for chunk in response: for part in chunk.candidates[0].content.parts: if part.thought: if mode != "thinking": yield f'data: {json.dumps({"mode": "thinking"})}\n\n' mode = "thinking" else: if mode != "answering": yield f'data: {json.dumps({"mode": "answering"})}\n\n' mode = "answering" yield f'data: {json.dumps({"content": part.text})}\n\n' except Exception as e: print(f"Error during generation: {e}") yield f'data: {json.dumps({"error": str(e)})}\n\n' return Response( stream_with_context(generate()), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'X-Accel-Buffering': 'no' } ) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/solved', methods=['POST']) def solved(): try: image_data = request.files['image'].read() img = Image.open(io.BytesIO(image_data)) buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() def generate(): mode = 'starting' try: response = client.models.generate_content_stream( model="gemini-2.0-flash-exp", contents=[ {'inline_data': {'mime_type': 'image/png', 'data': img_str}}, " Résous ça en français. Write you answer with rendering Latex." ] ) #Resous cette exercice. ça doit être bien présentable et espacé. je veux un jolie rendu for chunk in response: for part in chunk.candidates[0].content.parts: if part.thought: if mode != "thinking": yield f'data: {json.dumps({"mode": "thinking"})}\n\n' mode = "thinking" else: if mode != "answering": yield f'data: {json.dumps({"mode": "answering"})}\n\n' mode = "answering" yield f'data: {json.dumps({"content": part.text})}\n\n' except Exception as e: print(f"Error during generation: {e}") yield f'data: {json.dumps({"error": str(e)})}\n\n' return Response( stream_with_context(generate()), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'X-Accel-Buffering': 'no' } ) except Exception as e: return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(debug=True)