Spaces:
Runtime error
Runtime error
Add Antropic
Browse files- main.py +152 -42
- requirements.txt +1 -0
main.py
CHANGED
@@ -13,6 +13,8 @@ from pathlib import Path
|
|
13 |
from bs4 import BeautifulSoup
|
14 |
from typing import Union, List
|
15 |
import asyncio
|
|
|
|
|
16 |
from llama_index.core import (
|
17 |
StorageContext,
|
18 |
ServiceContext,
|
@@ -115,60 +117,159 @@ state_lp_json = gr.State()
|
|
115 |
state_nodes = gr.State()
|
116 |
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
async def analyze(self, ctx: Context, ev: StartEvent) -> StopEvent:
|
121 |
-
query = ev.get("query") # нове рішення
|
122 |
-
question = ev.get("question") # уточнююче питання
|
123 |
-
nodes = ev.get("nodes") # знайдені правові позиції
|
124 |
|
125 |
-
|
126 |
-
|
|
|
127 |
|
128 |
-
llm_analyse = OpenAI(model="gpt-4o", temperature=0)
|
129 |
-
# llm_analyse = OpenAI(model="gpt-4o-mini", temperature=0)
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
for i, node in enumerate(nodes, 1):
|
135 |
-
# Отримуємо текст з node.node якщо це NodeWithScore
|
136 |
-
node_text = node.node.text if hasattr(node, 'node') else node.text
|
137 |
-
# Отримуємо metadata з node.node якщо це NodeWithScore
|
138 |
-
metadata = node.node.metadata if hasattr(node, 'node') else node.metadata
|
139 |
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
|
|
147 |
response_format = {
|
148 |
"type": "json_schema",
|
149 |
"json_schema": {
|
150 |
-
"name": "relevant_positions_schema",
|
151 |
-
"schema":
|
152 |
-
"type": "object",
|
153 |
-
"properties": {
|
154 |
-
"relevant_positions": {
|
155 |
-
"type": "array",
|
156 |
-
"items": {
|
157 |
-
"type": "object",
|
158 |
-
"properties": {
|
159 |
-
"lp_id": {"type": "string"},
|
160 |
-
"source_index": {"type": "string"},
|
161 |
-
"description": {"type": "string"}
|
162 |
-
},
|
163 |
-
"required": ["lp_id", "source_index", "description"]
|
164 |
-
}
|
165 |
-
}
|
166 |
-
},
|
167 |
-
"required": ["relevant_positions"]
|
168 |
-
}
|
169 |
}
|
170 |
}
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
# Формування промпту та отримання відповіді
|
173 |
prompt = PRECEDENT_ANALYSIS_TEMPLATE.format(
|
174 |
query=query,
|
@@ -446,10 +547,19 @@ def create_gradio_interface():
|
|
446 |
except Exception as e:
|
447 |
return f"Error during search: {str(e)}", None
|
448 |
|
449 |
-
|
450 |
async def analyze_action(legal_position_json, question, nodes):
|
451 |
try:
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
# Формуємо єдиний текст запиту з legal_position_json
|
455 |
query = (
|
|
|
13 |
from bs4 import BeautifulSoup
|
14 |
from typing import Union, List
|
15 |
import asyncio
|
16 |
+
from anthropic import Anthropic
|
17 |
+
from openai import OpenAI
|
18 |
from llama_index.core import (
|
19 |
StorageContext,
|
20 |
ServiceContext,
|
|
|
117 |
state_nodes = gr.State()
|
118 |
|
119 |
|
120 |
+
from enum import Enum
|
121 |
+
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
class ModelProvider(str, Enum):
|
124 |
+
OPENAI = "openai"
|
125 |
+
ANTHROPIC = "anthropic"
|
126 |
|
|
|
|
|
127 |
|
128 |
+
class ModelName(str, Enum):
|
129 |
+
# OpenAI models
|
130 |
+
GPT4 = "gpt-4"
|
131 |
+
GPT4_TURBO = "gpt-4-turbo-preview"
|
132 |
+
GPT4_MINI = "gpt-4o-mini"
|
133 |
+
# Anthropic models
|
134 |
+
CLAUDE3_SONNET = "claude-3-sonnet-20240229"
|
135 |
+
CLAUDE3_OPUS = "claude-3-opus-20240229"
|
136 |
+
CLAUDE3_HAIKU = "claude-3-haiku-20240307"
|
137 |
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
class LLMAnalyzer:
|
140 |
+
def __init__(self, provider: ModelProvider, model_name: ModelName):
|
141 |
+
self.provider = provider
|
142 |
+
self.model_name = model_name
|
143 |
|
144 |
+
if provider == ModelProvider.OPENAI:
|
145 |
+
self.client = OpenAI(model=model_name) # Використовуємо LlamaOpenAI
|
146 |
+
elif provider == ModelProvider.ANTHROPIC:
|
147 |
+
self.client = Anthropic()
|
148 |
+
else:
|
149 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
150 |
|
151 |
+
async def analyze(self, prompt: str, response_schema: dict) -> str:
|
152 |
+
if self.provider == ModelProvider.OPENAI:
|
153 |
+
return await self._analyze_with_openai(prompt, response_schema)
|
154 |
+
else:
|
155 |
+
return await self._analyze_with_anthropic(prompt, response_schema)
|
156 |
+
|
157 |
+
async def _analyze_with_openai(self, prompt: str, response_schema: dict) -> str:
|
158 |
+
messages = [
|
159 |
+
ChatMessage(role="system",
|
160 |
+
content="Ти - кваліфікований юрист-аналітик, експерт з правових позицій Верховного Суду."),
|
161 |
+
ChatMessage(role="user", content=prompt)
|
162 |
+
]
|
163 |
|
164 |
+
# Правильний формат для response_format
|
165 |
response_format = {
|
166 |
"type": "json_schema",
|
167 |
"json_schema": {
|
168 |
+
"name": "relevant_positions_schema", # Додаємо обов'язкове поле name
|
169 |
+
"schema": response_schema
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
}
|
171 |
}
|
172 |
|
173 |
+
response = self.client.chat(
|
174 |
+
messages=messages,
|
175 |
+
response_format=response_format,
|
176 |
+
temperature=0
|
177 |
+
)
|
178 |
+
return response.message.content
|
179 |
+
|
180 |
+
async def _analyze_with_anthropic(self, prompt: str, response_schema: dict) -> str:
|
181 |
+
response = await self.client.messages.create(
|
182 |
+
model=self.model_name,
|
183 |
+
temperature=0,
|
184 |
+
system="Ти - кваліфікований юрист-аналітик, експерт з правових позицій Верховного Суду.",
|
185 |
+
messages=[{"role": "user", "content": prompt}],
|
186 |
+
response_format={"type": "json_schema", "schema": response_schema}
|
187 |
+
)
|
188 |
+
return response.content[0].text
|
189 |
+
|
190 |
+
|
191 |
+
class PrecedentAnalysisWorkflow(Workflow):
|
192 |
+
def __init__(self, provider: ModelProvider = ModelProvider.OPENAI,
|
193 |
+
model_name: ModelName = ModelName.GPT4_MINI):
|
194 |
+
super().__init__()
|
195 |
+
self.analyzer = LLMAnalyzer(provider, model_name)
|
196 |
+
|
197 |
+
@step
|
198 |
+
async def analyze(self, ctx: Context, ev: StartEvent) -> StopEvent:
|
199 |
+
try:
|
200 |
+
# Отримуємо параметри з події з дефолтними значеннями
|
201 |
+
query = ev.get("query", "")
|
202 |
+
question = ev.get("question", "")
|
203 |
+
nodes = ev.get("nodes", [])
|
204 |
+
|
205 |
+
# Перевірка на пусті значення
|
206 |
+
if not query:
|
207 |
+
return StopEvent(result="Помилка: Не надано текст нового рішення (query)")
|
208 |
+
|
209 |
+
if not nodes:
|
210 |
+
return StopEvent(result="Помилка: Не надано правові позиції для аналізу (nodes)")
|
211 |
+
|
212 |
+
# Підготовка контексту
|
213 |
+
context_parts = []
|
214 |
+
for i, node in enumerate(nodes, 1):
|
215 |
+
node_text = node.node.text if hasattr(node, 'node') else node.text
|
216 |
+
metadata = node.node.metadata if hasattr(node, 'node') else node.metadata
|
217 |
+
lp_id = metadata.get('lp_id', f'unknown_{i}')
|
218 |
+
context_parts.append(f"Source {i} (ID: {lp_id}):\n{node_text}")
|
219 |
+
|
220 |
+
context_str = "\n\n".join(context_parts)
|
221 |
+
|
222 |
+
# Схема відповіді
|
223 |
+
response_schema = {
|
224 |
+
"type": "object",
|
225 |
+
"properties": {
|
226 |
+
"relevant_positions": {
|
227 |
+
"type": "array",
|
228 |
+
"items": {
|
229 |
+
"type": "object",
|
230 |
+
"properties": {
|
231 |
+
"lp_id": {"type": "string"},
|
232 |
+
"source_index": {"type": "string"},
|
233 |
+
"description": {"type": "string"}
|
234 |
+
},
|
235 |
+
"required": ["lp_id", "source_index", "description"]
|
236 |
+
}
|
237 |
+
}
|
238 |
+
},
|
239 |
+
"required": ["relevant_positions"]
|
240 |
+
}
|
241 |
+
|
242 |
+
# Формування промпту
|
243 |
+
prompt = PRECEDENT_ANALYSIS_TEMPLATE.format(
|
244 |
+
query=query,
|
245 |
+
question=question if question else "Загальний аналіз релевантності",
|
246 |
+
context_str=context_str
|
247 |
+
)
|
248 |
+
|
249 |
+
# Отримання відповіді від моделі
|
250 |
+
response_content = await self.analyzer.analyze(prompt, response_schema)
|
251 |
+
|
252 |
+
try:
|
253 |
+
parsed_response = json.loads(response_content)
|
254 |
+
if "relevant_positions" in parsed_response:
|
255 |
+
response_lines = []
|
256 |
+
for position in parsed_response["relevant_positions"]:
|
257 |
+
position_text = (
|
258 |
+
f"* [{position['source_index']}] {position['description']} "
|
259 |
+
)
|
260 |
+
response_lines.append(position_text)
|
261 |
+
|
262 |
+
response_text = "\n".join(response_lines)
|
263 |
+
return StopEvent(result=response_text)
|
264 |
+
else:
|
265 |
+
return StopEvent(result="Не знайдено релевантних правових позицій")
|
266 |
+
|
267 |
+
except json.JSONDecodeError:
|
268 |
+
return StopEvent(result="Помилка обробки відповіді від AI")
|
269 |
+
|
270 |
+
except Exception as e:
|
271 |
+
return StopEvent(result=f"Error during analysis: {str(e)}")
|
272 |
+
|
273 |
# Формування промпту та отримання відповіді
|
274 |
prompt = PRECEDENT_ANALYSIS_TEMPLATE.format(
|
275 |
query=query,
|
|
|
547 |
except Exception as e:
|
548 |
return f"Error during search: {str(e)}", None
|
549 |
|
|
|
550 |
async def analyze_action(legal_position_json, question, nodes):
|
551 |
try:
|
552 |
+
# Використання з OpenAI
|
553 |
+
workflow = PrecedentAnalysisWorkflow(
|
554 |
+
provider=ModelProvider.OPENAI,
|
555 |
+
model_name=ModelName.GPT4_MINI
|
556 |
+
)
|
557 |
+
|
558 |
+
# # Використання з Anthropic
|
559 |
+
# workflow_anthropic = PrecedentAnalysisWorkflow(
|
560 |
+
# provider=ModelProvider.ANTHROPIC,
|
561 |
+
# model_name=ModelName.CLAUDE3_SONNET
|
562 |
+
# )
|
563 |
|
564 |
# Формуємо єдиний текст запиту з legal_position_json
|
565 |
query = (
|
requirements.txt
CHANGED
@@ -3,6 +3,7 @@ llama-index-readers-file
|
|
3 |
llama-index-vector-stores-faiss
|
4 |
llama-index-retrievers-bm25
|
5 |
openai
|
|
|
6 |
faiss-cpu
|
7 |
llama-index-embeddings-openai
|
8 |
llama-index-llms-openai
|
|
|
3 |
llama-index-vector-stores-faiss
|
4 |
llama-index-retrievers-bm25
|
5 |
openai
|
6 |
+
anthropic
|
7 |
faiss-cpu
|
8 |
llama-index-embeddings-openai
|
9 |
llama-index-llms-openai
|