Spaces:
Running
Running
from typing import Tuple, List, Optional | |
from llama_index.core.schema import NodeWithScore | |
import sys | |
from initialize import app_state | |
from utils import get_links_html, get_links_html_lp | |
async def search_with_ai_action(legal_position_json: dict) -> Tuple[str, Optional[List[NodeWithScore]]]: | |
try: | |
if app_state.retriever_bm25 is None: | |
raise ValueError("Retriever is not initialized") | |
query_text = ( | |
f"{legal_position_json['title']}: " | |
f"{legal_position_json['text']}: " | |
f"{legal_position_json['proceeding']}: " | |
f"{legal_position_json['category']}" | |
) | |
nodes = await app_state.retriever_bm25.aretrieve(query_text) | |
sources_output = "\n **Результати пошуку (наявні правові позиції ВСУ):** \n\n" | |
for index, node in enumerate(nodes, start=1): | |
source_title = node.node.metadata.get('title') | |
doc_ids = node.node.metadata.get('doc_id') | |
lp_ids = node.node.metadata.get('lp_id') | |
links = get_links_html(doc_ids) | |
links_lp = get_links_html_lp(lp_ids) | |
sources_output += f"\n[{index}] *{source_title}* {links_lp} 👉 Score: {node.score} {links}\n" | |
return sources_output, nodes | |
except Exception as e: | |
error_message = f"Error during search: {str(e)}" | |
print(error_message, file=sys.stderr) | |
return error_message, None |