# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numbers from typing import Dict, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from diffusers.utils import is_torch_version from .embeddings import get_activation from .embeddings import ( CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings, ) class AdaLayerNorm(nn.Module): r""" Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. """ def __init__(self, embedding_dim: int, num_embeddings: int): super().__init__() self.emb = nn.Embedding(num_embeddings, embedding_dim) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, embedding_dim * 2) self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor: emb = self.linear(self.silu(self.emb(timestep))) scale, shift = torch.chunk(emb, 2) x = self.norm(x) * (1 + scale) + shift return x class FP32LayerNorm(nn.LayerNorm): def forward(self, inputs: torch.Tensor) -> torch.Tensor: origin_dtype = inputs.dtype return F.layer_norm( inputs.float(), self.normalized_shape, self.weight.float() if self.weight is not None else None, self.bias.float() if self.bias is not None else None, self.eps, ).to(origin_dtype) class AdaLayerNormZero(nn.Module): r""" Norm layer adaptive layer norm zero (adaLN-Zero). Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. """ def __init__(self, embedding_dim: int, num_embeddings: Optional[int] = None, norm_type="layer_norm", bias=True): super().__init__() if num_embeddings is not None: self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) else: self.emb = None self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) elif norm_type == "fp32_layer_norm": self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) else: raise ValueError( f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." ) def forward( self, x: torch.Tensor, timestep: Optional[torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, hidden_dtype: Optional[torch.dtype] = None, emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: if self.emb is not None: emb = self.emb(timestep, class_labels, hidden_dtype=hidden_dtype) emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class AdaLayerNormZeroSingle(nn.Module): r""" Norm layer adaptive layer norm zero (adaLN-Zero). Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. """ def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) else: raise ValueError( f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." ) def forward( self, x: torch.Tensor, emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: emb = self.linear(self.silu(emb)) shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa class LuminaRMSNormZero(nn.Module): """ Norm layer adaptive RMS normalization zero. Parameters: embedding_dim (`int`): The size of each embedding vector. """ def __init__(self, embedding_dim: int, norm_eps: float, norm_elementwise_affine: bool): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear( min(embedding_dim, 1024), 4 * embedding_dim, bias=True, ) self.norm = RMSNorm(embedding_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) def forward( self, x: torch.Tensor, emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: # emb = self.emb(timestep, encoder_hidden_states, encoder_mask) emb = self.linear(self.silu(emb)) scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) x = self.norm(x) * (1 + scale_msa[:, None]) return x, gate_msa, scale_mlp, gate_mlp class AdaLayerNormSingle(nn.Module): r""" Norm layer adaptive layer norm single (adaLN-single). As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). Parameters: embedding_dim (`int`): The size of each embedding vector. use_additional_conditions (`bool`): To use additional conditions for normalization or not. """ def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): super().__init__() self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions ) self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) def forward( self, timestep: torch.Tensor, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, batch_size: Optional[int] = None, hidden_dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: # No modulation happening here. embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) return self.linear(self.silu(embedded_timestep)), embedded_timestep class AdaGroupNorm(nn.Module): r""" GroupNorm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. num_groups (`int`): The number of groups to separate the channels into. act_fn (`str`, *optional*, defaults to `None`): The activation function to use. eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability. """ def __init__( self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 ): super().__init__() self.num_groups = num_groups self.eps = eps if act_fn is None: self.act = None else: self.act = get_activation(act_fn) self.linear = nn.Linear(embedding_dim, out_dim * 2) def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: if self.act: emb = self.act(emb) emb = self.linear(emb) emb = emb[:, :, None, None] scale, shift = emb.chunk(2, dim=1) x = F.group_norm(x, self.num_groups, eps=self.eps) x = x * (1 + scale) + shift return x class AdaLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters # because the output is immediately scaled and shifted by the projected conditioning embeddings. # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. # However, this is how it was implemented in the original code, and it's rather likely you should # set `elementwise_affine` to False. elementwise_affine=True, eps=1e-5, bias=True, norm_type="layer_norm", ): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) if norm_type == "layer_norm": self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) elif norm_type == "rms_norm": self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) else: raise ValueError(f"unknown norm_type {norm_type}") def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) scale, shift = torch.chunk(emb, 2, dim=1) x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] return x class LuminaLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, # NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters # because the output is immediately scaled and shifted by the projected conditioning embeddings. # Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. # However, this is how it was implemented in the original code, and it's rather likely you should # set `elementwise_affine` to False. elementwise_affine=True, eps=1e-5, bias=True, norm_type="layer_norm", out_dim: Optional[int] = None, ): super().__init__() # AdaLN self.silu = nn.SiLU() self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) else: raise ValueError(f"unknown norm_type {norm_type}") # linear_2 if out_dim is not None: self.linear_2 = nn.Linear( embedding_dim, out_dim, bias=bias, ) def forward( self, x: torch.Tensor, conditioning_embedding: torch.Tensor, ) -> torch.Tensor: # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) scale = emb x = self.norm(x) * (1 + scale)[:, None, :] if self.linear_2 is not None: x = self.linear_2(x) return x if is_torch_version(">=", "2.1.0"): LayerNorm = nn.LayerNorm else: # Has optional bias parameter compared to torch layer norm # TODO: replace with torch layernorm once min required torch version >= 2.1 class LayerNorm(nn.Module): def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True): super().__init__() self.eps = eps if isinstance(dim, numbers.Integral): dim = (dim,) self.dim = torch.Size(dim) if elementwise_affine: self.weight = nn.Parameter(torch.ones(dim)) self.bias = nn.Parameter(torch.zeros(dim)) if bias else None else: self.weight = None self.bias = None def forward(self, input): return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps) class RMSNorm(nn.Module): def __init__(self, dim, eps: float, elementwise_affine: bool = True): super().__init__() self.eps = eps if isinstance(dim, numbers.Integral): dim = (dim,) self.dim = torch.Size(dim) if elementwise_affine: self.weight = nn.Parameter(torch.ones(dim)) else: self.weight = None def forward(self, hidden_states): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) if self.weight is not None: # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) hidden_states = hidden_states * self.weight else: hidden_states = hidden_states.to(input_dtype) return hidden_states class GlobalResponseNorm(nn.Module): # Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * nx) + self.beta + x