import datetime import gc import time import os import os.path as osp import re import itertools import functools import random import math import shutil from typing import Optional, Union import torch import numpy as np from safetensors import safe_open import logging from accelerate.logging import get_logger from accelerate import Accelerator, DistributedType from accelerate.utils import set_seed from peft import get_peft_model, LoraConfig, TaskType from dataset import create_dataset, create_loader from tasks.shared_utils import get_media_types from utils.basic_utils import (MetricLogger, SmoothedValue, setup_seed) from utils.config_utils import setup_main from transformers.utils import TensorType from tasks.shared_utils import create_optimizer, create_scheduler import copy from transformers import ( DataCollatorWithPadding, get_scheduler, AutoModel, AutoModelForCausalLM ) from models.pllava import PllavaConfig, PllavaForConditionalGeneration, PllavaProcessor # logger = logging.getLogger(__name__) IMAGE_TOKEN='' logger = get_logger(__name__) def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: print(name, 'no ignore status') with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param def get_state_maybe_zero_3(named_params, keys_to_match=["lora_","multi_modal_projector"]): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()} return to_return def setup_dataloaders(config, mode="pt", collate_fn=None): # train datasets, create a list of data loaders logger.info(f"Creating dataset for {mode}") train_datasets = create_dataset(f"{mode}_train", config) media_types = get_media_types(train_datasets) samplers = [None] * len(media_types) train_loaders = create_loader( train_datasets, samplers, batch_size=[config.inputs.batch_size[k] for k in media_types], num_workers=[config.num_workers] * len(media_types), is_trains=[True] * len(media_types), collate_fns=[collate_fn] * len(media_types), ) # [0] return train_loaders, media_types def setup_model( config, find_unused_parameters=False ): if config.model.torch_dtype in ('bfloat16', 'float16', 'float32'): torch_dtype = eval(f'torch.{config.model.torch_dtype}') else: torch_dtype = config.model.torch_dtype logger.info("Creating model") processor = PllavaProcessor.from_pretrained(config.model.repo_id, padding_side='right', center_pad=config.preprocess.center_pad, ) model_config = PllavaConfig.from_pretrained(config.model.repo_id, torch_dtype=torch_dtype, num_frames=config.model.num_frames, pooling_method=config.model.pooling_method, image_token_index=config.preprocess.image_token_index, frame_shape=config.model.frame_shape, pooling_shape=config.model.pooling_shape, use_pooling=config.model.use_pooling, gradient_checkpointing=config.gradient_checkpointing, ) print("====>gradient_checkpointing",model_config.gradient_checkpointing) model = PllavaForConditionalGeneration.from_pretrained(config.model.repo_id, config=model_config, torch_dtype=torch_dtype) if config.model.load_from_origin: with torch.no_grad(): lm_model = AutoModelForCausalLM.from_pretrained(config.model.origin_llm, torch_dtype=torch_dtype, device_map="cpu",) with torch.no_grad(): clip = AutoModel.from_pretrained(config.model.origin_vision, torch_dtype=torch_dtype, device_map="cpu",) msg = model.vision_tower.load_state_dict(clip.state_dict(), strict=False) # print(msg) msg = model.language_model.load_state_dict(lm_model.state_dict(), strict=False) print(msg) if config.model.freeze_lm: logger.info("freezing parameters in model.language_model") for p in model.language_model.parameters(): p.requires_grad = False if config.model.freeze_projector: logger.info("freezing parameters in model.multi_modal_projector") for p in model.multi_modal_projector.parameters(): p.requires_grad = False if config.model.freeze_vision_tower: logger.info("freezing parameters in model.vision_tower") for p in model.vision_tower.parameters(): p.requires_grad = False if config.model.use_lora: logger.info("getting LoRA Language Model") kwargs = {} if config.model.lora_target_modules is not None and len(config.model.lora_target_modules) > 0: kwargs.update({"target_modules": config.model.lora_target_modules}) peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=config.model.lora_r, lora_alpha=config.model.lora_alpha, lora_dropout=config.model.lora_dropout, **kwargs ) model.language_model = get_peft_model(model.language_model, peft_config) model.language_model.print_trainable_parameters() if config.model.pretrained_path is not None and not config.deepspeed: logger.info("======> loading pretrained weights from " + str(config.model.pretrained_path)) state_dict = {} save_fnames = os.listdir(config.model.pretrained_path) if "model.safetensors" in save_fnames: print("Loading weight from", config.model.pretrained_path, "model.safetensors") with safe_open(f"{config.model.pretrained_path}/model.safetensors", framework="pt", device="cpu") as f: for k in f.keys(): state_dict[k] = f.get_tensor(k) else: print("Loading weight from", config.model.pretrained_path) for fn in save_fnames: if fn.startswith('model-0000'): with safe_open(f"{config.model.pretrained_path}/{fn}", framework="pt", device="cpu") as f: for k in f.keys(): state_dict[k] = f.get_tensor(k) if 'model' in state_dict.keys(): msg = model.load_state_dict(state_dict['model'], strict=False) else: msg = model.load_state_dict(state_dict, strict=False) logger.info(msg) logger.info("=====> Finish loading") return model, processor def setup_optimizer_and_scheduler(config, model): optimizer = create_optimizer(config.optimizer, model) # do you want to filter bias and bn? if config.scheduler.is_videochat2_custom: scheduler = create_scheduler(config.scheduler, optimizer) else: scheduler=None return optimizer, scheduler class RandomMappingIterator(): # a random iter through the multiple mapping style dataloaders def __init__(self, train_loaders, media_types, resume_step=0): self.train_loaders = train_loaders self.media_types = media_types self.total_num_samples = sum(len(train_loader) for train_loader in self.train_loaders) self.weights = [len(loader) / self.total_num_samples for loader in train_loaders] self.resume_step = resume_step if resume_step != 0: self.total_num_samples= self.total_num_samples-resume_step # remove corresponding iters from each loader def __iter__(self): train_loaders = self.train_loaders iters = [iter(train_loader) for train_loader in train_loaders] media_types = copy.deepcopy(self.media_types) weights = copy.deepcopy(self.weights) while len(iters) > 0: index = np.random.choice(list(range(len(iters))), p=weights, replace=True) try: batch = next(iters[index]) except StopIteration as e: iters.pop(index) media_types.pop(index) weights.pop(index) total = sum(weights) weights = [w/total for w in weights] continue media_type = media_types[index] yield media_type, batch def __len__(self): return self.total_num_samples def split_and_record_separators(input_string, separators) -> list: texts = [input_string] for sep in separators: new_texts = [] for text in texts: if sep not in text: new_texts.append(text) else: split_strings = text.split(sep) joint_strings = [t for pair in zip(split_strings[:-1], itertools.repeat(sep)) for t in pair ] + split_strings[-1:] new_texts.extend(joint_strings) texts = new_texts return texts def preprocess( batch, args, processor, collate_fn, dtype=torch.bfloat16, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ): tokenizer = processor.tokenizer # tokenization for training max_length = args.max_txt_l input_list, images = [], [] for sample in batch: image, tex, instruction, index = sample # (nframe, 3, h, w), (0-255) num_img = image.shape[0] tex = tex.replace(args.dataset_video_placeholder, IMAGE_TOKEN).replace(args.dataset_image_placeholder, IMAGE_TOKEN) seps = [role for role in args.roles] segs = split_and_record_separators(tex, seps) input_ids, labels, attention_mask = [], [], [] for i, seg in enumerate(segs): seg_ignore = False if seg == seps[1] else \ (True if i == 0 or seg in seps else seg_ignore) # not ignoring assistant, changing in sepecific situations current_ignore = True if seg in seps else seg_ignore # serve for only this one iteration seg_input_ids = tokenizer.encode(seg, add_special_tokens=True if i==0 else False) # only add bos token seg_labels = [args.ignore_index] * len(seg_input_ids) if current_ignore else seg_input_ids seg_attention_mask = [1] * len(seg_input_ids) # do attend input_ids.extend(seg_input_ids) labels.extend(seg_labels) attention_mask.extend(seg_attention_mask) pad_length = max_length - len(input_ids) labels = labels[:max_length] attention_mask = attention_mask[:max_length] input_ids=input_ids[:max_length] labels = labels + [args.ignore_index] * pad_length # padding doesn't take care of labels. do the padding here input_ids = input_ids + [tokenizer.pad_token_id] * pad_length attention_mask = attention_mask + [0]*pad_length sample_input = { 'input_ids': input_ids, 'labels': labels, 'attention_mask': attention_mask, } input_list.append(sample_input) images.append(image if image.ndim==4 else image.unsqueeze(0)) # made 4 dim for image, remain 4 dim for video inputs = collate_fn(input_list) # interpolate frames if the total frame is smaller than needed for i, video in enumerate(images): if video.shape[0] < args.num_frames: multiplier = int(args.num_frames/video.shape[0]) + 1 video = video.repeat_interleave(multiplier, dim=0)[:args.num_frames] images[i] = video assert video.shape[0] == args.num_frames if args.clip_transform: multimodal_features = processor(images=images) inputs.update(**multimodal_features) else: inputs["pixel_values"] = torch.concat(images) # already processed to features in dataset get item return inputs def main(config): accelerator_log_kwargs=dict( log_with=config.report_to, project_dir=config.output_dir ) accelerator = Accelerator( gradient_accumulation_steps=config.gradient_accumulation_steps, **accelerator_log_kwargs ) logger.info(f"train_file: {config.train_file}") model, processor = setup_model( config, find_unused_parameters=True, ) if accelerator.is_main_process: logger.setLevel(logging.INFO) else: logger.setLevel(logging.WARNING) collate_fn = DataCollatorWithPadding(tokenizer=processor.tokenizer, padding='max_length', max_length=config.max_txt_l, return_tensors='pt',) collate_fn = functools.partial(preprocess, args=config.preprocess, processor=processor, collate_fn=collate_fn) train_loaders, train_media_types = setup_dataloaders(config, mode=config.mode, collate_fn=collate_fn) num_steps_per_epoch = math.ceil(sum(len(d) for d in train_loaders) / config.gradient_accumulation_steps) # load optimizer and custom scheduler config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs config.scheduler.num_warmup_steps = math.ceil(config.scheduler.num_training_steps * config.scheduler.warmup_ratio) optimizer, lr_scheduler = setup_optimizer_and_scheduler(config, model) # if not set customized scheduler, default hf scheduler overrode_max_train_steps = False if config.max_train_steps is None: config.max_train_steps = config.scheduler.epochs * num_steps_per_epoch overrode_max_train_steps = True if lr_scheduler is None: lr_scheduler = get_scheduler( name=config.scheduler.sched, optimizer=optimizer, num_warmup_steps=config.scheduler.num_warmup_steps, num_training_steps=config.max_train_steps if overrode_max_train_steps else config.max_train_steps * accelerator.num_processes, ) model, optimizer, lr_scheduler, *train_loaders = accelerator.prepare( model, optimizer, lr_scheduler, *train_loaders ) if hasattr(config, 'seed'): set_seed(config.seed) experiment_config = { # include all the important hyperparam 'num_frames': config.num_frames, 'max_txt_l': config.max_txt_l, 'batch_size': config.batch_size, } model.train() start_epoch = 0 num_batches = sum(len(loader) for loader in train_loaders) global_step = start_epoch * num_batches # the steps before divided by accumulation if osp.exists(config.output_dir): subfolders = os.listdir(config.output_dir) sample_saving = False for subfolder in subfolders: if subfolder.endswith("M"): sample_saving = True if sample_saving: ckpt_paths = [subfolder for subfolder in subfolders if re.match(r'ckpt_resume_[\d.]+M$', subfolder) is not None] ckpt_iters = [float(re.findall(r'[\d.]+', x)[0]) for x in ckpt_paths] else: ckpt_paths = [subfolder for subfolder in subfolders if re.match("ckpt_[^\d]+", subfolder) is not None] ckpt_iters = [int(s.split(re.match("ckpt_[^\d]+", s).group())[-1]) for s in ckpt_paths] resume_cur_epoch_step=0 if len(ckpt_iters) > 0: resume_iter = max(ckpt_iters) ckpt_path = osp.join(config.output_dir, ckpt_paths[ckpt_iters.index(resume_iter)]) accelerator.print(f"Resumed from checkpoint: {ckpt_path}") accelerator.load_state(ckpt_path) if sample_saving: resume_iter = int(resume_iter*1e6/(config.batch_size*accelerator.state.num_processes)) if "epoch" in ckpt_path: start_epoch = int(resume_iter) + 1 resume_cur_epoch_step = 0 global_step = start_epoch * num_batches else: # need to multiply `gradient_accumulation_steps` to reflect real steps # num_finish_smaple = int(max_ckpt_num) * config.gradient_accumulation_steps start_epoch = resume_iter // num_batches global_step = resume_iter resume_cur_epoch_step = resume_iter - start_epoch * num_batches accelerator.print(f"Resume from epoch {start_epoch}, steps{resume_cur_epoch_step}") # TensorBoard cannot log Enums, need the raw value accelerator.init_trackers("train_pllava_nframe", experiment_config) start_time = time.time() logger.info(f"Start training {str(start_time)}, from start_epoch-{start_epoch}, step-{resume_cur_epoch_step}") # skip the first `n` batches in the dataloader when resuming from a checkpoint active_train_loaders = train_loaders if resume_cur_epoch_step > 0: active_train_loaders = [] total_dta_num = sum(len(train_loader) for train_loader in train_loaders) for train_loader in train_loaders: skip_batch_num = int((resume_cur_epoch_step/total_dta_num)*len(train_loader)) skipped_train_loader = accelerator.skip_first_batches(train_loader, num_batches=skip_batch_num) active_train_loaders.append(skipped_train_loader) media_types = get_media_types(active_train_loaders) train_loader = RandomMappingIterator(active_train_loaders, media_types) for epoch in range(start_epoch, config.scheduler.epochs): if not config.evaluate: gc.collect() torch.cuda.empty_cache() metric_logger = MetricLogger(delimiter=" ") loss_names = ["loss"] for name in loss_names: for m in media_types: metric_logger.add_meter( f"{m}-{name}", SmoothedValue(window=config.metric_window_size, fmt="{value:.4f}") ) header = f"Train Epoch: [{epoch}]" log_freq = config.log_freq iterator = metric_logger.log_every(train_loader, log_freq, header) mini_batch_losses = [] for i, (media_type, inputs) in enumerate(iterator): # video/image, conversation, instruction, index with accelerator.accumulate(model): inputs['media_type'] = media_type response = model(**inputs) loss = response.loss mini_batch_losses.append(loss.detach().item()) optimizer.zero_grad() accelerator.backward(loss) if config.optimizer.max_grad_norm > 0: if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm) optimizer.step() lr_scheduler.step() # # logging for name in loss_names: value = loss value = value if isinstance(value, float) else value.item() metric_logger.update(**{f"{media_type}-{name}": value}) global_step += 1 resume_num_samples = global_step * config.batch_size * accelerator.state.num_processes/1e6 # save small global step checkpoint in case of breakdown if global_step % config.ckpt_steps == 0: accelerator.save_state(output_dir=osp.join(config.output_dir, f"ckpt_resume_{resume_num_samples:.4f}M")) if accelerator.is_main_process: for fn in os.listdir(config.output_dir): if "resume" in fn and fn != f"ckpt_resume_{resume_num_samples:.4f}M": shutil.rmtree(osp.join(config.output_dir, fn)) if global_step % config.save_steps == 0: logger.info(f"global_step {global_step}") with torch.no_grad(): accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) if not config.deepspeed: save_state_dict = {k:v for k,v in accelerator.get_state_dict(model).items() if "lora_" in k or "multi_modal_projector" in k} else: save_state_dict = accelerator.get_state_dict(model) unwrapped_model.save_pretrained(osp.join(config.output_dir, f"pretrained_step{resume_num_samples:.4f}M"), is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=save_state_dict) processor.save_pretrained(osp.join(config.output_dir, f"pretrained_step{resume_num_samples:.4f}M")) if global_step % log_freq == 0: logs = metric_logger.get_global_avg_dict() logs.update({ "step_loss_no_smoothing": accelerator.gather_for_metrics(loss).mean().item(), "epoch": epoch, "step": global_step, "lr": lr_scheduler.get_last_lr()[0], }) accelerator.log(logs, step=global_step,) if accelerator.sync_gradients: mini_batch_loss = torch.tensor(mini_batch_losses, device='cuda') accelerator.log({"mini_batch_loss": accelerator.gather_for_metrics(mini_batch_loss).mean().item()}, step=global_step) mini_batch_losses = [] if config.debug and global_step % 20 == 0: logger.info("debug mode, break training loop") break if config.debug and global_step % (2 * log_freq + 3) == 0: logger.info("debug mode, break training loop") break # gather the stats from all processes metric_logger.synchronize_between_processes() logger.info(f"Averaged stats: {metric_logger.global_avg()}") logger.info(f"Epoch {epoch}") with torch.no_grad(): accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) if not config.deepspeed: save_state_dict = {k:v for k,v in accelerator.get_state_dict(model).items() if "lora_" in k or "multi_modal_projector" in k} else: save_state_dict = accelerator.get_state_dict(model) unwrapped_model.save_pretrained(osp.join(config.output_dir, f"pretrained_epoch{epoch:02d}"), is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=save_state_dict) processor.save_pretrained(osp.join(config.output_dir, f"pretrained_step{epoch:02d}")) accelerator.save_state(output_dir=osp.join(config.output_dir, f"ckpt_epoch{epoch:02d}")) if config.evaluate: break accelerator.end_training() accelerator.wait_for_everyone() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info(f"Training time {total_time_str}") logger.info(f"Checkpoints and Logs saved at {config.output_dir}") if __name__ == "__main__": cfg = setup_main() print(cfg) main(cfg)