import copy import itertools import re import os import json from enum import auto, Enum import dataclasses from typing import Any, List from PIL import Image import cv2 import imageio import numpy as np import torch from torch.utils.data import Dataset import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from moviepy.editor import VideoFileClip from decord import VideoReader, cpu # This is Terrible, if you have this line of import in front of torch, will cause model.to(device) to hang from transformers import StoppingCriteria, StoppingCriteriaList from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection from utils.easydict import EasyDict IMAGE_TOKEN = "" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() MPT = auto() class MultiModalConvStyle(Enum): """Different separator style.""" MM_ALONE = 'mm_alone' MM_INTERLEAF = 'mm_inferleaf' def dump_json(obj_serializable ,save_dir_path, json_file_name): os.makedirs(save_dir_path, exist_ok=True) save_path = os.path.join(save_dir_path, json_file_name) with open(save_path, 'w', encoding='utf-8') as f: json.dump(obj_serializable, f, indent=4, ensure_ascii=False, ) def load_json(load_dir_path, json_file_name): load_path = os.path.join(load_dir_path, json_file_name) if not os.path.exists(load_path): return None with open(load_path, 'r', encoding='utf-8') as f: obj_serializable = json.load(f) return obj_serializable @dataclasses.dataclass class Conversation(EasyDict): """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] sep: List[str] mm_token: str mm_style: MultiModalConvStyle = MultiModalConvStyle.MM_INTERLEAF pre_query_prompt: str=None post_query_prompt: str=None answer_prompt: str=None def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if isinstance(self.sep, str): self.sep = [self.sep for _ in self.roles] def get_prompt(self): sep = [self.sep for _ in self.roles] if isinstance(self.sep, str) else self.sep # if only one sep given, then both sep are the sames sep = dict(zip(self.roles, sep)) ret = self.system + sep[self.roles[0]] if self.system != "" else "" for i, (role, message) in enumerate(self.messages): # if is last msg(the prompt for assistant), if answer prompt exists, no sep added if i+1 == len(self.messages): if role != self.roles[-1]: # last role is not the model ret += role + message + sep[role] + self.roles[-1] else: ret += role + message else: ret += role + message + sep[role] return ret # def get_prompt_multichoice(self): # pass def user_query(self, query=None, pre_query_prompt=None, post_query_prompt=None, is_mm=False, num_mm_token=1): if post_query_prompt is not None: query = f"{query} {post_query_prompt}" if pre_query_prompt is not None: query = f"{pre_query_prompt} {query}" role = self.roles[0] # TODO: remove the num_mm_token and hack the self.mm_token outside if is_mm: mm_str = num_mm_token*self.mm_token[:-1] + self.mm_token[-1] if self.mm_style == MultiModalConvStyle.MM_ALONE: self._append_message(role, mm_str) elif self.mm_style == MultiModalConvStyle.MM_INTERLEAF: if self.mm_token not in query: query = f'{mm_str} {query}' self._append_message(role, query) def assistant_response(self, response, pre_query_prompt=None, post_query_prompt=None): if post_query_prompt is not None: response = f"{response} {post_query_prompt}" if pre_query_prompt is not None: response = f"{post_query_prompt} {response}" role = self.roles[1] self._append_message(role, response) def _append_message(self, role, message): message = '' if message is None else message self.messages.append([role, message]) def copy(self): return copy.deepcopy(self) conv_video_chatgpt_v1 = Conversation( system="You are Video-ChatGPT, a large vision-language assistant. " "You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." "Follow the instructions carefully and explain your answers in detail based on the provided video.", roles=("USER:", "ASSISTANT:"), messages=[], sep=[" ",""], mm_token='', mm_style=MultiModalConvStyle.MM_INTERLEAF, ) conv_plain_v1 = Conversation( system="", roles=("USER:", "ASSISTANT:"), messages=[], sep=(" ", ""), mm_token='' ) # Attention to the roles[0] "USER: " has a space! conv_eval_vcg = Conversation( system="You are Video-ChatGPT, a large vision-language assistant. " "You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." "Follow the instructions carefully and explain your answers in detail based on the provided video.", roles=("USER: ", "ASSISTANT:"), messages=[], sep=[" ",""], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) conv_eval_vcg_llavanext = Conversation( system="You are Video-ChatGPT, a large vision-language assistant. " "You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." "Follow the instructions carefully and explain your answers in detail based on the provided video.", roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), messages=[], sep=["<|im_end|>\n","<|im_end|>\n"], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) SYSTEM_MVBENCH="Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.\n" conv_eval_mvbench = Conversation( system=SYSTEM_MVBENCH, roles=("USER: ", "ASSISTANT:"), messages=[], sep=[" ",""], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) conv_eval_mvbench_llavanext = Conversation( system="You are Video-ChatGPT, a large vision-language assistant. " "You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." "Follow the instructions carefully and explain your answers in detail based on the provided video.", roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), messages=[], sep=["<|im_end|>\n","<|im_end|>\n"], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) conv_eval_videoqabench = Conversation( system="", roles=("USER: ", "ASSISTANT:"), messages=[], sep=[" ",""], mm_token='\n', mm_style=MultiModalConvStyle.MM_INTERLEAF, pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:", post_query_prompt="\n", answer_prompt='\nAnswer: In the video,' ) conv_eval_videoqa_llavanext = Conversation( system="<|im_start|>system\nAnswer the question.", roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), messages=[], sep=["<|im_end|>\n","<|im_end|>\n"], mm_token='\n', mm_style=MultiModalConvStyle.MM_INTERLEAF, pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:", post_query_prompt="\n", answer_prompt='\nAnswer: In the video,' ) SYSTEM_RECAPTION="""You are a powerful Video Magic ChatBot, a large vision-language assistant. You are able to understand the video content that the user provides and assist the user in a video recaptioning task. The user will provide you with the video and maybe some extra noisy information to help you out. Make use of the information in a proper way to be competent for the recaption job ### INSTRUCTIONS: 1. Follow the user's instruction. 2. Be critical yet believe in yourself. """ conv_eval_recaption = Conversation( system=SYSTEM_RECAPTION, roles=("USER: ", "ASSISTANT:"), messages=[], sep=[" ",""], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) conv_eval_recaption_llavanext = Conversation( system=SYSTEM_RECAPTION, roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), messages=[], sep=["<|im_end|>\n","<|im_end|>\n"], mm_token='\n', mm_style=MultiModalConvStyle.MM_ALONE, ) conv_templates = { "plain": conv_plain_v1, "eval_vcgbench": conv_eval_vcg, "eval_vcg_llavanext": conv_eval_vcg_llavanext, "eval_mvbench": conv_eval_mvbench, "eval_mvbench_llavanext": conv_eval_mvbench_llavanext, "eval_videoqabench": conv_eval_videoqabench, "eval_videoqa_llavanext": conv_eval_videoqa_llavanext, "eval_recaption": conv_eval_recaption, "eval_recaption_llavanext": conv_eval_recaption_llavanext, } class EvalDataset(Dataset): def __init__(self, num_segments, test_ratio=None): super().__init__() self.num_segments = num_segments self.test_ratio = test_ratio self.decord_method = { 'video': self.read_video, 'gif': self.read_clip_gif, 'frame': self.read_frame, } def __getitem__(self, index) -> Any: raise NotImplementedError('') def __str__(self): len_list = {} option_list = {} for data in self.data_list: if data['task_type'] not in len_list: len_list[data['task_type']] = 0 len_list[data['task_type']] += 1 if data['task_type'] not in option_list: option_list[data['task_type']] = 0 option_list[data['task_type']] += len(data['data']['candidates']) correct = 0 total = 0 res = f"There are {len(self.data_list)} videos as follow:\n" for k, v in len_list.items(): correct += len_list[k] total += option_list[k] res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n" correct = correct + 1 / option_list[k] res += f"Total random accuracy: {correct/total*100:.2f}%" return res.rstrip() def __len__(self): return len(self.data_list) def get_index(self, bound, fps, max_frame, first_idx=0): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / self.num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(self.num_segments) ]) return frame_indices def read_video(self, video_path, bound=None): vr = VideoReader(video_path, ctx=cpu(0), num_threads=4) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) return images_group def read_gif(self, video_path, bound=None, fps=25): gif = imageio.get_reader(video_path) max_frame = len(gif) - 1 images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for index, frame in enumerate(gif): if index in frame_indices: img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) img = Image.fromarray(img) images_group.append(img) if len(images_group) == len(frame_indices): break # might be some really short videos in the gif datasets if len(images_group) < self.num_segments: multiplier = int(self.num_segments/len(images_group)) + 1 images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments] assert len(images_group) == self.num_segments return images_group def read_clip_gif(self, video_path, bound=None, fps=25): gif = VideoFileClip(video_path) frames = gif.iter_frames() max_frame = gif.reader.nframes - 1 images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) for index, frame in enumerate(frames): if index in frame_indices: img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) img = Image.fromarray(img) images_group.append(img) # might be some really short videos in the gif datasets if len(images_group) < self.num_segments: multiplier = int(self.num_segments/len(images_group)) + 1 images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments] assert len(images_group) == self.num_segments return images_group def read_frame(self, video_path, bound=None, fps=3): max_frame = len(os.listdir(video_path)) images_group = list() frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1 for frame_index in frame_indices: img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg")) images_group.append(img) return images_group def set_rank_and_world_size(self, rank, world_size): self.rank = rank self.world_size = world_size # self.data_list = self.data_list[::200] # debug if self.test_ratio is None: self.data_list = self.data_list[rank::world_size] else: np.random.RandomState(42).shuffle(self.data_list) if isinstance(self.test_ratio, float): num_samples = int(len(self.data_list) * self.test_ratio) else: num_samples = int(self.test_ratio) self.data_list = self.data_list[rank:num_samples:world_size] class ChatPllava: print_res=True do_sample=False def __init__(self, model, processor): self.model = model self.processor = processor def ask(self, text, conv: Conversation, system): conv.system = system conv.user_query(text, ) return conv def answer(self, conv: Conversation, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1, temperature=1.0): torch.cuda.empty_cache() prompt = conv.get_prompt() if prompt.count(conv.mm_token) < len(img_list): diff_mm_num = len(img_list) - prompt.count(conv.mm_token) for i in range(diff_mm_num): conv.user_query("", is_mm=True) prompt = conv.get_prompt() inputs = self.processor(text=prompt, images=img_list, return_tensors="pt") if inputs['pixel_values'] is None: inputs.pop('pixel_values') inputs = inputs.to(self.model.device) with torch.no_grad(): output_token = self.model.generate(**inputs, media_type='video', do_sample=self.do_sample,max_new_tokens=max_new_tokens, num_beams=num_beams, min_length=min_length, top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature, ) # dont need to long for the choice. output_text = self.processor.batch_decode(output_token, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] if self.print_res: print('###PROMPT: ', prompt) print('###LM OUTPUT TEXT', output_text) # <|im_start|> encode and then decode would extend a space at folloing, this is insane... if conv.roles[-1] == "<|im_start|>assistant\n": split_tag = "<|im_start|> assistant\n" else: split_tag = conv.roles[-1] output_text = output_text.split(split_tag)[-1].rstrip(conv.sep[1]) conv.assistant_response(output_text) return output_text, output_token.cpu().numpy(), conv def get_index(self, num_frames, num_segments): seg_size = float(num_frames - 1) / num_segments start = int(seg_size / 2) offsets = np.array([ start + int(np.round(seg_size * idx)) for idx in range(num_segments) ]) return offsets def load_video(self, video_path, num_segments=8, return_msg=False): vr = VideoReader(video_path, ctx=cpu(0)) num_frames = len(vr) frame_indices = self.get_index(num_frames, num_segments) duration = len(vr) // vr.get_avg_fps() index = np.linspace(0, len(vr)-1, num=int(duration)) buffer = vr.get_batch(index).asnumpy() # transform images_group = list() for frame in buffer: img = Image.fromarray(frame) images_group.append(img) images_group = list() for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) if return_msg: fps = float(vr.get_avg_fps()) sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices]) # " " should be added in the start and end msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds." return images_group, msg else: return images_group def upload_video(self, image, conv: Conversation, img_list: list[list], num_segments=None): num_segments = self.model.config.num_frames if num_segments is None else num_segments if isinstance(image, str): # is a image path vid, msg = self.load_video(image, num_segments=num_segments, return_msg=True) else: raise NotImplementedError print("Input video shape:", len(vid), *vid[0].size) img_list.append(vid) conv.user_query("", is_mm=True) msg = "Received." # self.conv.append_message(self.conv.roles[1], msg) return msg, img_list, conv def upload_img(self, image, conv, img_list): assert False img = image#Image.open(image)#.convert('RGB') transform = T.Compose( [ T.Resize( (224, 224), interpolation=InterpolationMode.BICUBIC ), T.ToTensor(), T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ] ) img = transform(img).unsqueeze(0).unsqueeze(0).cuda() image_emb, _ = self.model.encode_img(img, "Observe the image and answer the question.") img_list.append(image_emb) conv.messages.append([ conv.roles[0], f"\n" ]) msg = "Received." # self.conv.append_message(self.conv.roles[1], msg) return msg,img_list, conv class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False