import streamlit as st import torch from transformers import NllbTokenizer, AutoModelForSeq2SeqLM def fix_tokenizer(tokenizer, new_lang='fer_Latn'): """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) tokenizer.lang_code_to_id[new_lang] = old_len-1 tokenizer.id_to_lang_code[old_len-1] = new_lang # always move "mask" to the last position tokenizer.fairseq_tokens_to_ids[""] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} if new_lang not in tokenizer._additional_special_tokens: tokenizer._additional_special_tokens.append(new_lang) # clear the added token encoder; otherwise a new token may end up there by mistake tokenizer.added_tokens_encoder = {} tokenizer.added_tokens_decoder = {} MODEL_URL = "DinoDelija/nllb_english_fering" model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL) tokenizer = NllbTokenizer.from_pretrained(MODEL_URL) fix_tokenizer(tokenizer) def translate( text, model, tokenizer, src_lang='eng_Latn', tgt_lang='fer_Latn', max_length='auto', num_beams=4, n_out=None, **kwargs ): tokenizer.src_lang = src_lang encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) if max_length == 'auto': max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) model.eval() generated_tokens = model.generate( **encoded.to(model.device), forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], max_length=max_length, num_beams=num_beams, num_return_sequences=n_out or 1, **kwargs ) out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) if isinstance(text, str) and n_out is None: return out[0] return # pipeline = pipeline(task="translation", model="DinoDelija/nllb_english_fering") st.title("Translate English To Fering") eng_sentence = st.text_input("English Sentence", key="eng") translation = translate(eng_sentence, model=model, tokenizer=tokenizer) print(eng_sentence) print(translation) # st.write('Fering transaltion of the sentence is: ', translation) if translation != None: st.markdown(f'''Fering: \n {translation}''')