############################################################################################################################# # Filename : app.py # Description: A Streamlit application to showcase how RAG works. # Author : Georgios Ioannou # # Copyright © 2024 by Georgios Ioannou #RAG Code written by Farhikhta Farzan #MONGODB database created by Farhikhta Farzan #Documents and research gathered by Keira James, Farhikhta Farzan, and Tesneem Essa ############################################################################################################################# # Import libraries. import os import streamlit as st from dotenv import load_dotenv, find_dotenv from huggingface_hub import InferenceClient from langchain.prompts import PromptTemplate from langchain.schema import Document from langchain.schema.runnable import RunnablePassthrough, RunnableLambda from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings from langchain_community.vectorstores import MongoDBAtlasVectorSearch from pymongo import MongoClient from pymongo.collection import Collection from typing import Dict, Any ############################################################################################################################# class RAGQuestionAnswering: def __init__(self): """ Parameters ---------- None Output ------ None Purpose ------- Initializes the RAG Question Answering system by setting up configuration and loading environment variables. Assumptions ----------- - Expects .env file with MONGO_URI and HF_TOKEN - Requires proper MongoDB setup with vector search index - Needs connection to Hugging Face API Notes ----- This is the main class that handles all RAG operations """ self.load_environment() self.setup_mongodb() self.setup_embedding_model() self.setup_vector_search() self.setup_rag_chain() def load_environment(self) -> None: """ Parameters ---------- None Output ------ None Purpose ------- Loads environment variables from .env file and sets up configuration constants. Assumptions ----------- Expects a .env file with MONGO_URI and HF_TOKEN defined Notes ----- Will stop the application if required environment variables are missing """ load_dotenv(find_dotenv()) self.MONGO_URI = os.getenv("MONGO_URI") self.HF_TOKEN = os.getenv("HF_TOKEN") if not self.MONGO_URI or not self.HF_TOKEN: st.error("Please ensure MONGO_URI and HF_TOKEN are set in your .env file") st.stop() # MongoDB configuration. self.DB_NAME = "files" self.COLLECTION_NAME = "files_collection" self.VECTOR_SEARCH_INDEX = "vector_index" def setup_mongodb(self) -> None: """ Parameters ---------- None Output ------ None Purpose ------- Initializes the MongoDB connection and sets up the collection. Assumptions ----------- - Valid MongoDB URI is available - Database and collection exist in MongoDB Atlas Notes ----- Uses st.cache_resource for efficient connection management """ @st.cache_resource def init_mongodb() -> Collection: cluster = MongoClient(self.MONGO_URI) return cluster[self.DB_NAME][self.COLLECTION_NAME] self.mongodb_collection = init_mongodb() def setup_embedding_model(self) -> None: """ Parameters ---------- None Output ------ None Purpose ------- Initializes the embedding model for vector search. Assumptions ----------- - Valid Hugging Face API token - Internet connection to access the model Notes ----- Uses the all-mpnet-base-v2 model from sentence-transformers """ @st.cache_resource def init_embedding_model() -> HuggingFaceInferenceAPIEmbeddings: return HuggingFaceInferenceAPIEmbeddings( api_key=self.HF_TOKEN, model_name="sentence-transformers/all-mpnet-base-v2", ) self.embedding_model = init_embedding_model() def setup_vector_search(self) -> None: """ Parameters ---------- None Output ------ None Purpose ------- Sets up the vector search functionality using MongoDB Atlas. Assumptions ----------- - MongoDB Atlas vector search index is properly configured - Valid embedding model is initialized Notes ----- Creates a retriever with similarity search and score threshold """ @st.cache_resource def init_vector_search() -> MongoDBAtlasVectorSearch: return MongoDBAtlasVectorSearch.from_connection_string( connection_string=self.MONGO_URI, namespace=f"{self.DB_NAME}.{self.COLLECTION_NAME}", embedding=self.embedding_model, index_name=self.VECTOR_SEARCH_INDEX, ) self.vector_search = init_vector_search() self.retriever = self.vector_search.as_retriever( search_type="similarity", search_kwargs={"k": 10, "score_threshold": 0.85} ) def format_docs(self, docs: list[Document]) -> str: """ Parameters ---------- **docs:** list[Document] - List of documents to be formatted Output ------ str: Formatted string containing concatenated document content Purpose ------- Formats the retrieved documents into a single string for processing Assumptions ----------- Documents have page_content attribute Notes ----- Joins documents with double newlines for better readability """ return "\n\n".join(doc.page_content for doc in docs) def generate_response(self, input_dict: Dict[str, Any]) -> str: """ Parameters ---------- **input_dict:** Dict[str, Any] - Dictionary containing context and question Output ------ str: Generated response from the model Purpose ------- Generates a response using the Hugging Face model based on context and question Assumptions ----------- - Valid Hugging Face API token - Input dictionary contains 'context' and 'question' keys Notes ----- Uses Qwen2.5-1.5B-Instruct model with controlled temperature """ hf_client = InferenceClient(api_key=self.HF_TOKEN) formatted_prompt = self.prompt.format(**input_dict) response = hf_client.chat.completions.create( model="Qwen/Qwen2.5-1.5B-Instruct", messages=[ {"role": "system", "content": formatted_prompt}, {"role": "user", "content": input_dict["question"]}, ], max_tokens=1000, temperature=0.2, ) return response.choices[0].message.content def setup_rag_chain(self) -> None: """ Parameters ---------- None Output ------ None Purpose ------- Sets up the RAG chain for processing questions and generating answers Assumptions ----------- Retriever and response generator are properly initialized Notes ----- Creates a chain that combines retrieval and response generation """ self.prompt = PromptTemplate.from_template( """Use the following pieces of context to answer the question at the end. START OF CONTEXT: {context} END OF CONTEXT: START OF QUESTION: {question} END OF QUESTION: If you do not know the answer, just say that you do not know. NEVER assume things. """ ) self.rag_chain = { "context": self.retriever | RunnableLambda(self.format_docs), "question": RunnablePassthrough(), } | RunnableLambda(self.generate_response) def process_question(self, question: str) -> str: """ Parameters ---------- **question:** str - The user's question to be answered Output ------ str: The generated answer to the question Purpose ------- Processes a user question through the RAG chain and returns an answer Assumptions ----------- - Question is a non-empty string - RAG chain is properly initialized Notes ----- Main interface for question-answering functionality """ return self.rag_chain.invoke(question) ############################################################################################################################# def setup_streamlit_ui() -> None: """ Parameters ---------- None Output ------ None Purpose ------- Sets up the Streamlit user interface with proper styling and layout Assumptions ----------- - CSS file exists at ./static/styles/style.css - Image file exists at ./static/images/ctp.png Notes ----- Handles all UI-related setup and styling """ st.set_page_config(page_title="RAG Question Answering", page_icon="🤖") # Load CSS. with open("./static/styles/style.css") as f: st.markdown(f"", unsafe_allow_html=True) # Title and subtitles. st.markdown( '

RAG Question Answering

', unsafe_allow_html=True, ) st.markdown( '

Using Documents and Research

', unsafe_allow_html=True, ) st.markdown( '

Digital Detectives: AI VS Real Images

', unsafe_allow_html=True, ) # Display logo. left_co, cent_co, last_co = st.columns(3) with cent_co: st.image("./static/images/poster.jpg") ############################################################################################################################# def main(): """ Parameters ---------- None Output ------ None Purpose ------- Main function that runs the Streamlit application Assumptions ----------- All required environment variables and files are present Notes ----- Entry point for the application """ # Setup UI. setup_streamlit_ui() # Initialize RAG system. rag_system = RAGQuestionAnswering() # Create input elements. query = st.text_input("Question:", key="question_input") # Handle submission. if st.button("Submit", type="primary"): if query: with st.spinner("Generating response..."): response = rag_system.process_question(query) st.text_area("Answer:", value=response, height=200, disabled=True) else: st.warning("Please enter a question.") # Add GitHub link. st.markdown( """

Check out our GitHub repository

""", unsafe_allow_html=True, ) ############################################################################################################################# if __name__ == "__main__": main()