vevo-test / app.py
积极的屁孩
debug audio saving format
4a1664c
raw
history blame
20.4 kB
import os
import sys
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
# 克隆Amphion仓库
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
# 将Amphion加入到路径中
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
# 确保需要的目录存在
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
# 下载和设置配置文件
def setup_configs():
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = [
"PhoneToVq8192.json",
"Vocoder.json",
"Vq32ToVq8192.json",
"Vq8192ToMels.json",
"hubert_large_l18_c32.yaml",
]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(
repo_id="amphion/Vevo",
filename=f"config/{file}",
repo_type="model",
)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# 拷贝文件到目标位置
subprocess.run(["cp", file_data, file_path])
except Exception as e:
print(f"下载配置文件 {file} 时出错: {e}")
setup_configs()
# 设备配置
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"使用设备: {device}")
# 初始化管道字典
inference_pipelines = {}
def get_pipeline(pipeline_type):
if pipeline_type in inference_pipelines:
return inference_pipelines[pipeline_type]
# 根据需要的管道类型初始化
if pipeline_type == "style" or pipeline_type == "voice":
# 下载Content Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq32/*"],
)
content_tokenizer_ckpt_path = os.path.join(
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
)
# 下载Content-Style Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Autoregressive Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
)
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "timbre":
# 下载Content-Style Tokenizer (仅timbre需要)
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
elif pipeline_type == "tts":
# 下载Content-Style Tokenizer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["tokenizer/vq8192/*"],
)
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
# 下载Autoregressive Transformer (TTS特有)
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
)
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
# 下载Flow Matching Transformer
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
)
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
# 下载Vocoder
local_dir = snapshot_download(
repo_id="amphion/Vevo",
repo_type="model",
cache_dir="./ckpts/Vevo",
allow_patterns=["acoustic_modeling/Vocoder/*"],
)
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
# 初始化管道
inference_pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
ar_cfg_path=ar_cfg_path,
ar_ckpt_path=ar_ckpt_path,
fmt_cfg_path=fmt_cfg_path,
fmt_ckpt_path=fmt_ckpt_path,
vocoder_cfg_path=vocoder_cfg_path,
vocoder_ckpt_path=vocoder_ckpt_path,
device=device,
)
# 缓存管道实例
inference_pipelines[pipeline_type] = inference_pipeline
return inference_pipeline
# 实现VEVO功能函数
def vevo_style(content_wav, style_wav):
temp_content_path = "wav/temp_content.wav"
temp_style_path = "wav/temp_style.wav"
output_path = "wav/output_vevostyle.wav"
# 检查并正确处理音频数据
if content_wav is None or style_wav is None:
raise ValueError("请上传音频文件")
# Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
if isinstance(content_wav, tuple) and len(content_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
content_tensor = torch.FloatTensor(content_data)
if content_tensor.ndim == 1:
content_tensor = content_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("内容音频格式不正确")
if isinstance(style_wav, tuple) and len(style_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(style_wav[0], np.ndarray):
style_data, style_sr = style_wav
else:
style_sr, style_data = style_wav
style_tensor = torch.FloatTensor(style_data)
if style_tensor.ndim == 1:
style_tensor = style_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("风格音频格式不正确")
# 保存上传的音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_style_path, style_tensor, style_sr)
# 获取管道
pipeline = get_pipeline("style")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_style_path,
timbre_ref_wav_path=temp_content_path,
)
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_timbre(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevotimbre.wav"
# 检查并正确处理音频数据
if content_wav is None or reference_wav is None:
raise ValueError("请上传音频文件")
# Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
if isinstance(content_wav, tuple) and len(content_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
content_tensor = torch.FloatTensor(content_data)
if content_tensor.ndim == 1:
content_tensor = content_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("内容音频格式不正确")
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
reference_tensor = torch.FloatTensor(reference_data)
if reference_tensor.ndim == 1:
reference_tensor = reference_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("参考音频格式不正确")
# 保存上传的音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
# 获取管道
pipeline = get_pipeline("timbre")
# 推理
gen_audio = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_voice(content_wav, reference_wav):
temp_content_path = "wav/temp_content.wav"
temp_reference_path = "wav/temp_reference.wav"
output_path = "wav/output_vevovoice.wav"
# 检查并正确处理音频数据
if content_wav is None or reference_wav is None:
raise ValueError("请上传音频文件")
# Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
if isinstance(content_wav, tuple) and len(content_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(content_wav[0], np.ndarray):
content_data, content_sr = content_wav
else:
content_sr, content_data = content_wav
content_tensor = torch.FloatTensor(content_data)
if content_tensor.ndim == 1:
content_tensor = content_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("内容音频格式不正确")
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(reference_wav[0], np.ndarray):
reference_data, reference_sr = reference_wav
else:
reference_sr, reference_data = reference_wav
reference_tensor = torch.FloatTensor(reference_data)
if reference_tensor.ndim == 1:
reference_tensor = reference_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("参考音频格式不正确")
# 保存上传的音频
torchaudio.save(temp_content_path, content_tensor, content_sr)
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
# 获取管道
pipeline = get_pipeline("voice")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=temp_content_path,
src_text=None,
style_ref_wav_path=temp_reference_path,
timbre_ref_wav_path=temp_reference_path,
)
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
def vevo_tts(text, ref_wav, timbre_ref_wav=None, src_language="en", ref_language="en"):
temp_ref_path = "wav/temp_ref.wav"
temp_timbre_path = "wav/temp_timbre.wav"
output_path = "wav/output_vevotts.wav"
# 检查并正确处理音频数据
if ref_wav is None:
raise ValueError("请上传参考音频文件")
# Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(ref_wav[0], np.ndarray):
ref_data, ref_sr = ref_wav
else:
ref_sr, ref_data = ref_wav
ref_tensor = torch.FloatTensor(ref_data)
if ref_tensor.ndim == 1:
ref_tensor = ref_tensor.unsqueeze(0) # 添加通道维度
else:
raise ValueError("参考音频格式不正确")
# 保存上传的音频
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
if timbre_ref_wav is not None:
if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
# 确保正确的顺序 (data, sample_rate)
if isinstance(timbre_ref_wav[0], np.ndarray):
timbre_data, timbre_sr = timbre_ref_wav
else:
timbre_sr, timbre_data = timbre_ref_wav
timbre_tensor = torch.FloatTensor(timbre_data)
if timbre_tensor.ndim == 1:
timbre_tensor = timbre_tensor.unsqueeze(0) # 添加通道维度
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
else:
raise ValueError("音色参考音频格式不正确")
else:
temp_timbre_path = temp_ref_path
# 获取管道
pipeline = get_pipeline("tts")
# 推理
gen_audio = pipeline.inference_ar_and_fm(
src_wav_path=None,
src_text=text,
style_ref_wav_path=temp_ref_path,
timbre_ref_wav_path=temp_timbre_path,
style_ref_wav_text=None,
src_text_language=src_language,
style_ref_wav_text_language=ref_language,
)
# 保存生成的音频
save_audio(gen_audio, output_path=output_path)
return output_path
# 创建Gradio界面
with gr.Blocks(title="VEVO Demo") as demo:
gr.Markdown("# VEVO: 多功能语音合成模型演示")
gr.Markdown("## 可控零样本声音模仿与风格转换")
with gr.Tab("风格转换 (Style)"):
gr.Markdown("### Vevo-Style: 保持音色但转换风格(如口音、情感等)")
with gr.Row():
with gr.Column():
style_content = gr.Audio(label="内容音频", type="numpy")
style_reference = gr.Audio(label="风格音频", type="numpy")
style_button = gr.Button("生成")
with gr.Column():
style_output = gr.Audio(label="生成结果")
style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
with gr.Tab("音色转换 (Timbre)"):
gr.Markdown("### Vevo-Timbre: 保持风格但转换音色")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="内容音频", type="numpy")
timbre_reference = gr.Audio(label="音色参考音频", type="numpy")
timbre_button = gr.Button("生成")
with gr.Column():
timbre_output = gr.Audio(label="生成结果")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
with gr.Tab("声音转换 (Voice)"):
gr.Markdown("### Vevo-Voice: 同时转换风格和音色")
with gr.Row():
with gr.Column():
voice_content = gr.Audio(label="内容音频", type="numpy")
voice_reference = gr.Audio(label="声音参考音频", type="numpy")
voice_button = gr.Button("生成")
with gr.Column():
voice_output = gr.Audio(label="生成结果")
voice_button.click(vevo_voice, inputs=[voice_content, voice_reference], outputs=voice_output)
with gr.Tab("文本到语音 (TTS)"):
gr.Markdown("### Vevo-TTS: 风格与音色可控的文本到语音转换")
with gr.Row():
with gr.Column():
tts_text = gr.Textbox(label="输入文本", placeholder="请输入要合成的文本...", lines=3)
tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="文本语言", value="en")
tts_reference = gr.Audio(label="风格参考音频", type="numpy")
tts_ref_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="参考音频语言", value="en")
with gr.Accordion("高级选项", open=False):
tts_timbre_reference = gr.Audio(label="音色参考音频(可选)", type="numpy")
tts_button = gr.Button("生成")
with gr.Column():
tts_output = gr.Audio(label="生成结果")
tts_button.click(
vevo_tts,
inputs=[tts_text, tts_reference, tts_timbre_reference, tts_src_language, tts_ref_language],
outputs=tts_output
)
gr.Markdown("""
## 关于VEVO
VEVO是一个多功能语音合成和转换模型,提供四种主要功能:
1. **Vevo-Style**: 保持音色但转换风格(如口音、情感等)
2. **Vevo-Timbre**: 保持风格但转换音色
3. **Vevo-Voice**: 同时转换风格和音色
4. **Vevo-TTS**: 风格与音色可控的文本到语音转换
更多信息请访问[Amphion项目](https://github.com/open-mmlab/Amphion)
""")
# 启动应用
demo.launch()