File size: 21,566 Bytes
c3e56e6
 
f4115c6
c3e56e6
f4115c6
 
 
b3c35e4
58ea642
 
f4115c6
 
 
 
 
 
 
58ea642
f4115c6
 
 
5e1a778
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4257f
 
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
9c4257f
f4115c6
5e1a778
f4115c6
 
 
9c4257f
f4115c6
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
2b148a9
f4115c6
 
 
 
 
 
 
 
 
9c4257f
f4115c6
 
 
 
 
 
 
 
 
0a31a84
f4115c6
 
 
 
 
 
 
 
 
 
 
 
0a31a84
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e8c834
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d202deb
f4115c6
 
 
 
 
 
 
 
 
c3e56e6
e48a9d8
4a1664c
 
 
e48a9d8
4a1664c
 
 
 
 
e48a9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
 
e48a9d8
4a1664c
 
 
 
 
 
 
 
 
 
 
 
e48a9d8
 
 
 
 
4a1664c
 
c3e56e6
e48a9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4115c6
 
 
 
 
c3e56e6
4a1664c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4115c6
4a1664c
 
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
c3e56e6
4a1664c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4115c6
4a1664c
 
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1664c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4115c6
4a1664c
f4115c6
 
4a1664c
 
 
 
 
 
 
 
 
 
 
 
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3e56e6
f4115c6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import sys
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess

# 克隆Amphion仓库
if not os.path.exists("Amphion"):
    subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
    os.chdir("Amphion")
else:
    if not os.getcwd().endswith("Amphion"):
        os.chdir("Amphion")

# 将Amphion加入到路径中
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
    sys.path.append(os.path.dirname(os.path.abspath("Amphion")))

# 确保需要的目录存在
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)

from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav

# 下载和设置配置文件
def setup_configs():
    config_path = "models/vc/vevo/config"
    os.makedirs(config_path, exist_ok=True)
    
    config_files = [
        "PhoneToVq8192.json",
        "Vocoder.json",
        "Vq32ToVq8192.json",
        "Vq8192ToMels.json",
        "hubert_large_l18_c32.yaml",
    ]
    
    for file in config_files:
        file_path = f"{config_path}/{file}"
        if not os.path.exists(file_path):
            try:
                file_data = hf_hub_download(
                    repo_id="amphion/Vevo", 
                    filename=f"config/{file}", 
                    repo_type="model",
                )
                os.makedirs(os.path.dirname(file_path), exist_ok=True)
                # 拷贝文件到目标位置
                subprocess.run(["cp", file_data, file_path])
            except Exception as e:
                print(f"下载配置文件 {file} 时出错: {e}")

setup_configs()

# 设备配置
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"使用设备: {device}")

# 初始化管道字典
inference_pipelines = {}

def get_pipeline(pipeline_type):
    if pipeline_type in inference_pipelines:
        return inference_pipelines[pipeline_type]
    
    # 根据需要的管道类型初始化
    if pipeline_type == "style" or pipeline_type == "voice":
        # 下载Content Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq32/*"],
        )
        content_tokenizer_ckpt_path = os.path.join(
            local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
        )
        
        # 下载Content-Style Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Autoregressive Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["contentstyle_modeling/Vq32ToVq8192/*"],
        )
        ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
        ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            ar_cfg_path=ar_cfg_path,
            ar_ckpt_path=ar_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
        
    elif pipeline_type == "timbre":
        # 下载Content-Style Tokenizer (仅timbre需要)
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
        
    elif pipeline_type == "tts":
        # 下载Content-Style Tokenizer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["tokenizer/vq8192/*"],
        )
        content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
        
        # 下载Autoregressive Transformer (TTS特有)
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["contentstyle_modeling/PhoneToVq8192/*"],
        )
        ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
        ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
        
        # 下载Flow Matching Transformer
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vq8192ToMels/*"],
        )
        fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
        fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
        
        # 下载Vocoder
        local_dir = snapshot_download(
            repo_id="amphion/Vevo",
            repo_type="model",
            cache_dir="./ckpts/Vevo",
            allow_patterns=["acoustic_modeling/Vocoder/*"],
        )
        vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
        vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
        
        # 初始化管道
        inference_pipeline = VevoInferencePipeline(
            content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
            ar_cfg_path=ar_cfg_path,
            ar_ckpt_path=ar_ckpt_path,
            fmt_cfg_path=fmt_cfg_path,
            fmt_ckpt_path=fmt_ckpt_path,
            vocoder_cfg_path=vocoder_cfg_path,
            vocoder_ckpt_path=vocoder_ckpt_path,
            device=device,
        )
    
    # 缓存管道实例
    inference_pipelines[pipeline_type] = inference_pipeline
    return inference_pipeline

# 实现VEVO功能函数
def vevo_style(content_wav, style_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_style_path = "wav/temp_style.wav"
    output_path = "wav/output_vevostyle.wav"
    
    # 检查并处理音频数据
    if content_wav is None or style_wav is None:
        raise ValueError("请上传音频文件")
    
    # 处理音频格式
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        
        # 确保是单声道
        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        # 重采样到24kHz
        if content_sr != 24000:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        else:
            content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        
        # 归一化音量
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
    else:
        raise ValueError("内容音频格式不正确")
    
    if isinstance(style_wav, tuple) and len(style_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(style_wav[0], np.ndarray):
            style_data, style_sr = style_wav
        else:
            style_sr, style_data = style_wav
        style_tensor = torch.FloatTensor(style_data)
        if style_tensor.ndim == 1:
            style_tensor = style_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("风格音频格式不正确")
    
    # 打印debug信息
    print(f"内容音频形状: {content_tensor.shape}, 采样率: {content_sr}")
    print(f"风格音频形状: {style_tensor.shape}, 采样率: {style_sr}")
    
    # 保存音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_style_path, style_tensor, style_sr)
    
    try:
        # 获取管道
        pipeline = get_pipeline("style")
        
        # 推理
        gen_audio = pipeline.inference_ar_and_fm(
            src_wav_path=temp_content_path,
            src_text=None,
            style_ref_wav_path=temp_style_path,
            timbre_ref_wav_path=temp_content_path,
        )
        
        # 检查生成音频是否为数值异常
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("警告:生成的音频包含NaN或Inf值")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        print(f"生成音频形状: {gen_audio.shape}, 最大值: {torch.max(gen_audio)}, 最小值: {torch.min(gen_audio)}")
        
        # 保存生成的音频
        save_audio(gen_audio, output_path=output_path)
        
        return output_path
    except Exception as e:
        print(f"处理过程中出错: {e}")
        import traceback
        traceback.print_exc()
        raise e

def vevo_timbre(content_wav, reference_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_reference_path = "wav/temp_reference.wav"
    output_path = "wav/output_vevotimbre.wav"
    
    # 检查并正确处理音频数据
    if content_wav is None or reference_wav is None:
        raise ValueError("请上传音频文件")
    
    # Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        content_tensor = torch.FloatTensor(content_data)
        if content_tensor.ndim == 1:
            content_tensor = content_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("内容音频格式不正确")
        
    if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(reference_wav[0], np.ndarray):
            reference_data, reference_sr = reference_wav
        else:
            reference_sr, reference_data = reference_wav
        reference_tensor = torch.FloatTensor(reference_data)
        if reference_tensor.ndim == 1:
            reference_tensor = reference_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("参考音频格式不正确")
    
    # 保存上传的音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
    
    # 获取管道
    pipeline = get_pipeline("timbre")
    
    # 推理
    gen_audio = pipeline.inference_fm(
        src_wav_path=temp_content_path,
        timbre_ref_wav_path=temp_reference_path,
        flow_matching_steps=32,
    )
    
    # 保存生成的音频
    save_audio(gen_audio, output_path=output_path)
    
    return output_path

def vevo_voice(content_wav, reference_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_reference_path = "wav/temp_reference.wav"
    output_path = "wav/output_vevovoice.wav"
    
    # 检查并正确处理音频数据
    if content_wav is None or reference_wav is None:
        raise ValueError("请上传音频文件")
    
    # Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
    if isinstance(content_wav, tuple) and len(content_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(content_wav[0], np.ndarray):
            content_data, content_sr = content_wav
        else:
            content_sr, content_data = content_wav
        content_tensor = torch.FloatTensor(content_data)
        if content_tensor.ndim == 1:
            content_tensor = content_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("内容音频格式不正确")
        
    if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(reference_wav[0], np.ndarray):
            reference_data, reference_sr = reference_wav
        else:
            reference_sr, reference_data = reference_wav
        reference_tensor = torch.FloatTensor(reference_data)
        if reference_tensor.ndim == 1:
            reference_tensor = reference_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("参考音频格式不正确")
    
    # 保存上传的音频
    torchaudio.save(temp_content_path, content_tensor, content_sr)
    torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
    
    # 获取管道
    pipeline = get_pipeline("voice")
    
    # 推理
    gen_audio = pipeline.inference_ar_and_fm(
        src_wav_path=temp_content_path,
        src_text=None,
        style_ref_wav_path=temp_reference_path,
        timbre_ref_wav_path=temp_reference_path,
    )
    
    # 保存生成的音频
    save_audio(gen_audio, output_path=output_path)
    
    return output_path

def vevo_tts(text, ref_wav, timbre_ref_wav=None, src_language="en", ref_language="en"):
    temp_ref_path = "wav/temp_ref.wav"
    temp_timbre_path = "wav/temp_timbre.wav"
    output_path = "wav/output_vevotts.wav"
    
    # 检查并正确处理音频数据
    if ref_wav is None:
        raise ValueError("请上传参考音频文件")
    
    # Gradio音频组件返回(sample_rate, data)元组或(data, sample_rate)元组
    if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
        # 确保正确的顺序 (data, sample_rate)
        if isinstance(ref_wav[0], np.ndarray):
            ref_data, ref_sr = ref_wav
        else:
            ref_sr, ref_data = ref_wav
        ref_tensor = torch.FloatTensor(ref_data)
        if ref_tensor.ndim == 1:
            ref_tensor = ref_tensor.unsqueeze(0)  # 添加通道维度
    else:
        raise ValueError("参考音频格式不正确")
    
    # 保存上传的音频
    torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
    
    if timbre_ref_wav is not None:
        if isinstance(timbre_ref_wav, tuple) and len(timbre_ref_wav) == 2:
            # 确保正确的顺序 (data, sample_rate)
            if isinstance(timbre_ref_wav[0], np.ndarray):
                timbre_data, timbre_sr = timbre_ref_wav
            else:
                timbre_sr, timbre_data = timbre_ref_wav
            timbre_tensor = torch.FloatTensor(timbre_data)
            if timbre_tensor.ndim == 1:
                timbre_tensor = timbre_tensor.unsqueeze(0)  # 添加通道维度
            torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
        else:
            raise ValueError("音色参考音频格式不正确")
    else:
        temp_timbre_path = temp_ref_path
    
    # 获取管道
    pipeline = get_pipeline("tts")
    
    # 推理
    gen_audio = pipeline.inference_ar_and_fm(
        src_wav_path=None,
        src_text=text,
        style_ref_wav_path=temp_ref_path,
        timbre_ref_wav_path=temp_timbre_path,
        style_ref_wav_text=None,
        src_text_language=src_language,
        style_ref_wav_text_language=ref_language,
    )
    
    # 保存生成的音频
    save_audio(gen_audio, output_path=output_path)
    
    return output_path

# 创建Gradio界面
with gr.Blocks(title="VEVO Demo") as demo:
    gr.Markdown("# VEVO: 多功能语音合成模型演示")
    gr.Markdown("## 可控零样本声音模仿与风格转换")
    
    with gr.Tab("风格转换 (Style)"):
        gr.Markdown("### Vevo-Style: 保持音色但转换风格(如口音、情感等)")
        with gr.Row():
            with gr.Column():
                style_content = gr.Audio(label="内容音频", type="numpy")
                style_reference = gr.Audio(label="风格音频", type="numpy")
                style_button = gr.Button("生成")
            with gr.Column():
                style_output = gr.Audio(label="生成结果")
        style_button.click(vevo_style, inputs=[style_content, style_reference], outputs=style_output)
    
    with gr.Tab("音色转换 (Timbre)"):
        gr.Markdown("### Vevo-Timbre: 保持风格但转换音色")
        with gr.Row():
            with gr.Column():
                timbre_content = gr.Audio(label="内容音频", type="numpy")
                timbre_reference = gr.Audio(label="音色参考音频", type="numpy")
                timbre_button = gr.Button("生成")
            with gr.Column():
                timbre_output = gr.Audio(label="生成结果")
        timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
    
    with gr.Tab("声音转换 (Voice)"):
        gr.Markdown("### Vevo-Voice: 同时转换风格和音色")
        with gr.Row():
            with gr.Column():
                voice_content = gr.Audio(label="内容音频", type="numpy")
                voice_reference = gr.Audio(label="声音参考音频", type="numpy")
                voice_button = gr.Button("生成")
            with gr.Column():
                voice_output = gr.Audio(label="生成结果")
        voice_button.click(vevo_voice, inputs=[voice_content, voice_reference], outputs=voice_output)
    
    with gr.Tab("文本到语音 (TTS)"):
        gr.Markdown("### Vevo-TTS: 风格与音色可控的文本到语音转换")
        with gr.Row():
            with gr.Column():
                tts_text = gr.Textbox(label="输入文本", placeholder="请输入要合成的文本...", lines=3)
                tts_src_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="文本语言", value="en")
                tts_reference = gr.Audio(label="风格参考音频", type="numpy")
                tts_ref_language = gr.Dropdown(["en", "zh", "de", "fr", "ja", "ko"], label="参考音频语言", value="en")
                
                with gr.Accordion("高级选项", open=False):
                    tts_timbre_reference = gr.Audio(label="音色参考音频(可选)", type="numpy")
                
                tts_button = gr.Button("生成")
            with gr.Column():
                tts_output = gr.Audio(label="生成结果")
        
        tts_button.click(
            vevo_tts, 
            inputs=[tts_text, tts_reference, tts_timbre_reference, tts_src_language, tts_ref_language], 
            outputs=tts_output
        )
    
    gr.Markdown("""
    ## 关于VEVO
    VEVO是一个多功能语音合成和转换模型,提供四种主要功能:
    1. **Vevo-Style**: 保持音色但转换风格(如口音、情感等)
    2. **Vevo-Timbre**: 保持风格但转换音色
    3. **Vevo-Voice**: 同时转换风格和音色
    4. **Vevo-TTS**: 风格与音色可控的文本到语音转换
    
    更多信息请访问[Amphion项目](https://github.com/open-mmlab/Amphion)
    """)

# 启动应用
demo.launch()