Spaces:
Sleeping
Sleeping
diegulio
commited on
Commit
·
3be99bb
1
Parent(s):
9689840
🐶🧡🐱
Browse files- app.py +38 -0
- app/backbone.py +6 -0
- app/config.py +14 -0
- app/model.py +123 -0
- data/labels.csv +0 -0
- model/best_model.pt +3 -0
- requirements.txt +21 -0
- statics/cat.jpg +0 -0
- statics/no.jpg +0 -0
- statics/poodle.jpg +0 -0
- statics/pug.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from app.model import PetClassificationModel
|
4 |
+
from app.backbone import Backbone
|
5 |
+
from app.config import CFG
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
backbone = Backbone(CFG.MODEL, len(CFG.idx_to_class), pretrained = CFG.PRETRAINED)
|
10 |
+
model = PetClassificationModel(base_model = backbone.model, config = CFG)
|
11 |
+
model.load_state_dict(torch.load('models/best_model.pt'))
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
|
14 |
+
# Eval mode
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
|
20 |
+
pred_transforms = transforms.Compose([
|
21 |
+
transforms.Resize(CFG.IMG_SIZE),
|
22 |
+
transforms.ToTensor(),
|
23 |
+
])
|
24 |
+
|
25 |
+
def predict(x):
|
26 |
+
x = pred_transforms(x).unsqueeze(0) # transform and batched
|
27 |
+
x = x.to(device)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
prediction = torch.nn.functional.softmax(model(x)[0], dim=0)
|
31 |
+
confidences = {CFG.idx_to_class[i]: float(prediction[i]) for i in range(len(CFG.idx_to_class))}
|
32 |
+
|
33 |
+
return confidences
|
34 |
+
|
35 |
+
gr.Interface(fn=predict,
|
36 |
+
inputs=gr.Image(type="pil"),
|
37 |
+
outputs=gr.Label(num_top_classes=5),
|
38 |
+
examples=["statics/pug.jpg", "statics/poodle.jpg", "statics/cat.jpg", "statics/no.jpg"]).launch()
|
app/backbone.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
class Backbone:
|
5 |
+
def __init__(self, model, num_classes, pretrained = True):
|
6 |
+
self.model = timm.create_model(model, pretrained = pretrained, num_classes = num_classes)
|
app/config.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
class CFG:
|
4 |
+
LABEL_PATH = 'data/labels.csv'
|
5 |
+
|
6 |
+
labels = pd.read_csv(LABEL_PATH)
|
7 |
+
idx_to_class = dict(enumerate(labels.breed.unique()))
|
8 |
+
class_to_idx = {c:i for i,c in idx_to_class.items()}
|
9 |
+
|
10 |
+
|
11 |
+
# Model related
|
12 |
+
MODEL = 'inception_v4'
|
13 |
+
PRETRAINED = True
|
14 |
+
IMG_SIZE = (299, 299) # Depends in base model
|
app/model.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
import lightning as L
|
7 |
+
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import optim
|
10 |
+
from torchmetrics import Accuracy
|
11 |
+
|
12 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
class PetClassificationModel(L.LightningModule):
|
17 |
+
def __init__(self, base_model, config):
|
18 |
+
super().__init__()
|
19 |
+
self.config = config
|
20 |
+
self.num_classes = len(self.config.idx_to_class)
|
21 |
+
metric = Accuracy(task="multiclass", num_classes=self.num_classes)
|
22 |
+
self.train_acc = metric.clone()
|
23 |
+
self.val_acc = metric.clone()
|
24 |
+
self.test_acc = metric.clone()
|
25 |
+
self.training_step_outputs = []
|
26 |
+
self.validation_step_outputs = []
|
27 |
+
self.test_step_outputs = []
|
28 |
+
self.device_ = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
|
30 |
+
self.pretrained_model = base_model
|
31 |
+
out_features = self.pretrained_model.get_classifier().out_features
|
32 |
+
self.custom_layers = nn.Sequential(
|
33 |
+
nn.Linear(out_features, 512, device = self.device_),
|
34 |
+
nn.ReLU(),
|
35 |
+
nn.Dropout(),
|
36 |
+
nn.Linear(512, self.num_classes, device = self.device_),
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.pretrained_model(x)
|
41 |
+
#x = self.custom_layers(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
def training_step(self, batch, batch_idx):
|
46 |
+
x,y = batch
|
47 |
+
logits = self.forward(x) # -> logits
|
48 |
+
loss = F.cross_entropy(logits, y)
|
49 |
+
self.log_dict({'train_loss': loss})
|
50 |
+
self.training_step_outputs.append({'loss': loss, 'logits': logits, 'y':y})
|
51 |
+
return loss
|
52 |
+
|
53 |
+
def on_train_epoch_end(self):
|
54 |
+
# Concat batches
|
55 |
+
outputs = self.training_step_outputs
|
56 |
+
logits = torch.cat([x['logits'] for x in outputs])
|
57 |
+
y = torch.cat([x['y'] for x in outputs])
|
58 |
+
self.train_acc(logits, y)
|
59 |
+
self.log_dict({
|
60 |
+
'train_acc': self.train_acc,
|
61 |
+
},
|
62 |
+
on_step = False,
|
63 |
+
on_epoch = True,
|
64 |
+
prog_bar = True)
|
65 |
+
self.training_step_outputs.clear()
|
66 |
+
|
67 |
+
def validation_step(self, batch, batch_idx):
|
68 |
+
x,y = batch
|
69 |
+
logits = self.forward(x)
|
70 |
+
loss = F.cross_entropy(logits, y)
|
71 |
+
self.log_dict({'val_loss': loss})
|
72 |
+
self.validation_step_outputs.append({'loss': loss, 'logits': logits, 'y':y})
|
73 |
+
return loss
|
74 |
+
|
75 |
+
def on_validation_epoch_end(self):
|
76 |
+
# Concat batches
|
77 |
+
outputs = self.validation_step_outputs
|
78 |
+
logits = torch.cat([x['logits'] for x in outputs])
|
79 |
+
y = torch.cat([x['y'] for x in outputs])
|
80 |
+
self.val_acc(logits, y)
|
81 |
+
self.log_dict({
|
82 |
+
'val_acc': self.val_acc,
|
83 |
+
},
|
84 |
+
on_step = False,
|
85 |
+
on_epoch = True,
|
86 |
+
prog_bar = True)
|
87 |
+
self.validation_step_outputs.clear()
|
88 |
+
|
89 |
+
def test_step(self, batch, batch_idx):
|
90 |
+
x,y = batch
|
91 |
+
logits = self.forward(x)
|
92 |
+
loss = F.cross_entropy(logits, y)
|
93 |
+
self.log_dict({'test_loss': loss})
|
94 |
+
self.test_step_outputs.append({'loss': loss, 'logits': logits, 'y':y})
|
95 |
+
return loss
|
96 |
+
|
97 |
+
def on_test_epoch_end(self):
|
98 |
+
# Concat batches
|
99 |
+
outputs = self.test_step_outputs
|
100 |
+
logits = torch.cat([x['logits'] for x in outputs])
|
101 |
+
y = torch.cat([x['y'] for x in outputs])
|
102 |
+
self.test_acc(logits, y)
|
103 |
+
self.log_dict({
|
104 |
+
'test_acc': self.test_acc,
|
105 |
+
},
|
106 |
+
on_step = False,
|
107 |
+
on_epoch = True,
|
108 |
+
prog_bar = True)
|
109 |
+
self.test_step_outputs.clear()
|
110 |
+
|
111 |
+
def predict_step(self, batch):
|
112 |
+
x, y = batch
|
113 |
+
return self.model(x, y)
|
114 |
+
|
115 |
+
def configure_optimizers(self):
|
116 |
+
optimizer = optim.Adam(self.parameters(), lr=self.config.LEARNING_RATE)
|
117 |
+
lr_scheduler = ReduceLROnPlateau(optimizer, mode = 'min', patience = 3)
|
118 |
+
lr_scheduler_dict = {
|
119 |
+
"scheduler": lr_scheduler,
|
120 |
+
"interval": "epoch",
|
121 |
+
"monitor": "val_loss",
|
122 |
+
}
|
123 |
+
return {'optimizer': optimizer, 'lr_scheduler': lr_scheduler_dict}
|
data/labels.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/best_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cfcd4a15303233e194dfa4ba9945be1a1bfcb004f5e05677a53b5684ccf3933
|
3 |
+
size 166425282
|
requirements.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.50.2
|
2 |
+
gradio_client==0.6.1
|
3 |
+
huggingface-hub==0.18.0
|
4 |
+
lightning==2.1.0
|
5 |
+
lightning-utilities==0.9.0
|
6 |
+
mypy-extensions==1.0.0
|
7 |
+
numpy==1.25.2
|
8 |
+
pandas==2.1.1
|
9 |
+
Pillow==10.1.0
|
10 |
+
python-dateutil==2.8.2
|
11 |
+
python-multipart==0.0.6
|
12 |
+
pytorch-lightning==2.1.0
|
13 |
+
rpds-py==0.10.6
|
14 |
+
safetensors==0.4.0
|
15 |
+
scikit-learn==1.3.1
|
16 |
+
scipy==1.9.3
|
17 |
+
timm==0.9.7
|
18 |
+
torch==2.1.0
|
19 |
+
torchmetrics==1.2.0
|
20 |
+
torchvision==0.16.0
|
21 |
+
|
statics/cat.jpg
ADDED
![]() |
statics/no.jpg
ADDED
![]() |
statics/poodle.jpg
ADDED
![]() |
statics/pug.jpg
ADDED
![]() |