Harmonize / Recomendation.py
Diego-0121's picture
Update Recomendation.py
c3c18c4
raw
history blame
4.35 kB
from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd
import numpy as np
from vectorization import spotify_data
import json
import gradio as gr
from gradio.components import Textbox
from ast import literal_eval
spotify_data_processed = pd.read_csv('C:\\Users\\34640\\Desktop\\Saturdays.ai\\spotify_dset\\dataset_modificado.csv')
def convert_string_to_array(str_vector):
# Si str_vector ya es un array de NumPy, devolverlo directamente
if isinstance(str_vector, np.ndarray):
return str_vector
try:
cleaned_str = str_vector.replace('[', '').replace(']', '').replace('\n', ' ').replace('\r', '').strip()
vector_elements = [float(item) for item in cleaned_str.split()]
return np.array(vector_elements)
except ValueError as e:
print("Error:", e)
return np.zeros((100,))
spotify_data_processed['song_vector'] = spotify_data_processed['song_vector'].apply(convert_string_to_array)
# Aplicar la funci贸n a las primeras filas para ver los resultados
sample_data = spotify_data_processed['song_vector'].head()
converted_vectors = sample_data.apply(convert_string_to_array)
print(converted_vectors)
def recommend_song(song_name, artist_name, spotify_data_processed, top_n=4):
# Filtrar para encontrar la canci贸n espec铆fica
specific_song = spotify_data_processed[(spotify_data_processed['song'] == song_name)
& (spotify_data_processed['artist'] == artist_name)]
# Verificar si la canci贸n existe en el dataset
if specific_song.empty:
return pd.DataFrame({"Error": ["Canci贸n no encontrada en la base de datos."]})
# Obtener el vector de la canci贸n espec铆fica
song_vec = specific_song['song_vector'].iloc[0]
# Asegurarte de que song_vec sea un array de NumPy
if isinstance(song_vec, str):
song_vec = convert_string_to_array(song_vec)
all_song_vectors = np.array(spotify_data_processed['song_vector'].tolist())
# Calcular similitudes
similarities = cosine_similarity([song_vec], all_song_vectors)[0]
# Obtener los 铆ndices de las canciones m谩s similares
top_indices = np.argsort(similarities)[::-1][1:top_n+1]
# Devolver los nombres y artistas de las canciones m谩s similares
recommended_songs = spotify_data_processed.iloc[top_indices][['song', 'artist']]
return recommended_songs
def recommend_song_interface(song_name, artist_name):
recommendations_df = recommend_song(song_name, artist_name, spotify_data_processed)
# Verificar si el DataFrame est谩 vac铆o o si las columnas necesarias est谩n presentes
if isinstance(recommendations_df, pd.DataFrame) and not recommendations_df.empty and {'song', 'artist'}.issubset(recommendations_df.columns):
recommendations_list = recommendations_df[['song', 'artist']].values.tolist()
formatted_recommendations = ["{} by {}".format(song, artist) for song, artist in recommendations_list]
# Rellenar con cadenas vac铆as si hay menos de 4 recomendaciones
while len(formatted_recommendations) < 4:
formatted_recommendations.append("")
return formatted_recommendations[:4]
else:
# Devolver mensajes de error o cadenas vac铆as si no se cumplen las condiciones anteriores
return ["Error: No se pudo procesar las recomendaciones."] + [""] * 3
# Crear la interfaz con Gradio
iface = gr.Interface(
fn=recommend_song_interface,
inputs=[
gr.Textbox(placeholder="Ingrese el t铆tulo de la canci贸n", label="T铆tulo de la Canci贸n"),
gr.Textbox(placeholder="Ingrese el nombre del artista", label="Nombre del Artista")
],
outputs=[gr.Text(label="Recomendaci贸n 1"),
gr.Text(label="Recomendaci贸n 2"),
gr.Text(label="Recomendaci贸n 3"),
gr.Text(label="Recomendaci贸n 4")],
title="Recomendador de Canciones",
description="Ingrese el t铆tulo de una canci贸n y el nombre del artista para obtener recomendaciones.",
theme="dark", # Comenta o elimina si el tema oscuro no est谩 disponible
css="""
body {font-family: Arial, sans-serif;}
.input_text {background-color: #f0f0f0; border-radius: 5px;}
.output_text {border: 2px solid #f0f0f0; border-radius: 5px; padding: 10px;}
"""
)
iface.launch()