# gradio imports
import gradio as gr
import os
import time
# Imports
import os
import openai
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import TextLoader
from langchain.text_splitter import MarkdownTextSplitter
# from langchain.chat_models import ChatOpenAI
# from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
# from langchain.document_loaders import TextLoader
# from langchain.memory import ConversationBufferMemory
# from langchain.chat_models import ChatOpenAI
from langchain.chains.router import MultiRetrievalQAChain
from langchain.llms import OpenAI
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
Chat about Bulevar's Menu
"""
prompt_hints = """
What is in the crab tostada?
"""
# from index import PERSIST_DIRECTORY, CalendarIndex
REST_PERSIST_DIRECTORY = "chromadb_bul_details"
FOOD_GUIDE_PERSIST_DIRECTORY = "chromadb_food_guide"
# Create embeddings
# # create memory object
# from langchain.memory import ConversationBufferMemory
# memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def loading_pdf():
return "Loading..."
def loading_database(open_ai_key):
if open_ai_key is not None:
os.environ['OPENAI_API_KEY'] = open_ai_key
openai.api_key = open_ai_key
embeddings = OpenAIEmbeddings(openai_api_key=open_ai_key)
# adds these restuarant details setnences
bulevar_restaurant_texts = [
"Bulevar is open Sunday through Wednesday from 5-9pm, and Thursday through Saturday from 4-10pm. It is open for lunch on Friday from 11-3pm",
"Bulevar is located in the Arboretum at 360 and Mopac, next to Eddie V's",
"Bulevar offers tasty Mexican Cuisine with a laid back style to fine-dining.",
"Bulevar is another restaurant created by Guy and Larry. With the success of their ATX Cocina, Bulevar has created another unique dining experience with high quality dishes."
]
bulevar_details_retriever = Chroma.from_texts(bulevar_restaurant_texts, embeddings, persist_directory=REST_PERSIST_DIRECTORY) #, embedding_function= embeddings
if not os.path.exists(REST_PERSIST_DIRECTORY):
save_dir(bulevar_details_retriever)
loader = TextLoader('raw_text/food_guide.md')
documents = loader.load()
# adds the food_guide database
text_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
docs_retriever = Chroma.from_documents(docs, embeddings, persist_directory=FOOD_GUIDE_PERSIST_DIRECTORY)
if not os.path.exists(FOOD_GUIDE_PERSIST_DIRECTORY):
save_dir(docs_retriever)
retriever_infos = [
{
"name": "Food Guide",
"description": "Good for answering questions about the menu",
"retriever": docs_retriever.as_retriever()
},
{
"name": "Bulevar Restaurant Details",
"description": "Good for answering questions about Bulevar's hours, and restaurant details such as its mission, history, and owners.",
"retriever": bulevar_details_retriever.as_retriever()
}
]
global chain
chain = MultiRetrievalQAChain.from_retrievers(OpenAI(temperature=0, openai_api_key=open_ai_key), retriever_infos, verbose=True)
return "Ready"
else:
return "You forgot OpenAI API key"
def save_dir(vectorstore_retriever):
vectorstore_retriever.persist()
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.05)
yield history
def infer(question, history):
# print("Here")
# print(question)
# print(history)
# print("DISPLAYED!!!")
res = []
# for human, ai in history[:-1]:
# pair = (human, ai)
# res.append(pair)
# print("now ask something new")
chat_history = res
query = question
result = chain({"input": query})
return result["result"]
def update_message(question_component, chat_prompts):
question_component.value = chat_prompts.get_name()
return None
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
with gr.Row():
openai_key = gr.Textbox(label="OpenAI API key", type="password")
submit_api_key = gr.Button("Submit")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
submit_btn = gr.Button("Send Message")
gr.HTML(prompt_hints)
submit_api_key.click(loading_database, inputs=[openai_key], outputs=[langchain_status], queue=False)
# demo.load(loading_database, None, langchain_status)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot)
demo.queue(concurrency_count=2, max_size=20).launch()