# gradio imports import gradio as gr import os import time # Imports import os import openai from langchain.chains import ConversationalRetrievalChain from langchain.embeddings.openai import OpenAIEmbeddings from langchain.document_loaders import TextLoader from langchain.text_splitter import MarkdownTextSplitter # from langchain.chat_models import ChatOpenAI # from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma # from langchain.document_loaders import TextLoader # from langchain.memory import ConversationBufferMemory # from langchain.chat_models import ChatOpenAI from langchain.chains.router import MultiRetrievalQAChain from langchain.llms import OpenAI css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Chat about Bulevar's Menu

""" prompt_hints = """

What is in the crab tostada?

""" # from index import PERSIST_DIRECTORY, CalendarIndex REST_PERSIST_DIRECTORY = "chromadb_bul_details" FOOD_GUIDE_PERSIST_DIRECTORY = "chromadb_food_guide" # Create embeddings # # create memory object # from langchain.memory import ConversationBufferMemory # memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) def loading_pdf(): return "Loading..." def loading_database(open_ai_key): if open_ai_key is not None: os.environ['OPENAI_API_KEY'] = open_ai_key openai.api_key = open_ai_key embeddings = OpenAIEmbeddings(openai_api_key=open_ai_key) # adds these restuarant details setnences bulevar_restaurant_texts = [ "Bulevar is open Sunday through Wednesday from 5-9pm, and Thursday through Saturday from 4-10pm. It is open for lunch on Friday from 11-3pm", "Bulevar is located in the Arboretum at 360 and Mopac, next to Eddie V's", "Bulevar offers tasty Mexican Cuisine with a laid back style to fine-dining.", "Bulevar is another restaurant created by Guy and Larry. With the success of their ATX Cocina, Bulevar has created another unique dining experience with high quality dishes." ] bulevar_details_retriever = Chroma.from_texts(bulevar_restaurant_texts, embeddings, persist_directory=REST_PERSIST_DIRECTORY) #, embedding_function= embeddings if not os.path.exists(REST_PERSIST_DIRECTORY): save_dir(bulevar_details_retriever) loader = TextLoader('raw_text/food_guide.md') documents = loader.load() # adds the food_guide database text_splitter = MarkdownTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) docs_retriever = Chroma.from_documents(docs, embeddings, persist_directory=FOOD_GUIDE_PERSIST_DIRECTORY) if not os.path.exists(FOOD_GUIDE_PERSIST_DIRECTORY): save_dir(docs_retriever) retriever_infos = [ { "name": "Food Guide", "description": "Good for answering questions about the menu", "retriever": docs_retriever.as_retriever() }, { "name": "Bulevar Restaurant Details", "description": "Good for answering questions about Bulevar's hours, and restaurant details such as its mission, history, and owners.", "retriever": bulevar_details_retriever.as_retriever() } ] global chain chain = MultiRetrievalQAChain.from_retrievers(OpenAI(temperature=0, openai_api_key=open_ai_key), retriever_infos, verbose=True) return "Ready" else: return "You forgot OpenAI API key" def save_dir(vectorstore_retriever): vectorstore_retriever.persist() def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history def infer(question, history): # print("Here") # print(question) # print(history) # print("DISPLAYED!!!") res = [] # for human, ai in history[:-1]: # pair = (human, ai) # res.append(pair) # print("now ask something new") chat_history = res query = question result = chain({"input": query}) return result["result"] def update_message(question_component, chat_prompts): question_component.value = chat_prompts.get_name() return None with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): with gr.Row(): openai_key = gr.Textbox(label="OpenAI API key", type="password") submit_api_key = gr.Button("Submit") with gr.Row(): langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") submit_btn = gr.Button("Send Message") gr.HTML(prompt_hints) submit_api_key.click(loading_database, inputs=[openai_key], outputs=[langchain_status], queue=False) # demo.load(loading_database, None, langchain_status) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot) demo.queue(concurrency_count=2, max_size=20).launch()