import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM from aksharamukha import transliterate import torch # Set up device device = "cuda" if torch.cuda.is_available() else "cpu" # Load translation models and tokenizers trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M").to(device) eng_trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") translator = pipeline('translation', model=trans_model, tokenizer=eng_trans_tokenizer, src_lang="eng_Latn", tgt_lang='sin_Sinh', max_length=400, device=device) sin_trans_model = AutoModelForSeq2SeqLM.from_pretrained("thilina/mt5-sinhalese-english").to(device) si_trans_tokenizer = AutoTokenizer.from_pretrained("thilina/mt5-sinhalese-english", use_fast=False) # Use slow tokenizer singlish_pipe = pipeline("text2text-generation", model="Dhahlan2000/Simple_Translation-model-for-GPT-v14") # Translation functions def translate_Singlish_to_sinhala(text): translated_text = singlish_pipe(f"translate Singlish to Sinhala: {text}", clean_up_tokenization_spaces=False)[0]['generated_text'] return translated_text def translate_english_to_sinhala(text): parts = text.split("\n") translated_parts = [translator(part, clean_up_tokenization_spaces=False)[0]['translation_text'] for part in parts] return "\n".join(translated_parts).replace("ප් රභූවරුන්", "") def translate_sinhala_to_english(text): parts = text.split("\n") translated_parts = [] for part in parts: inputs = si_trans_tokenizer(part.strip(), return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) outputs = sin_trans_model.generate(**inputs) translated_part = si_trans_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) translated_parts.append(translated_part) return "\n".join(translated_parts) def transliterate_from_sinhala(text): latin_text = transliterate.process('Sinhala', 'Velthuis', text).replace('.', '').replace('*', '').replace('"', '').lower() return latin_text def transliterate_to_sinhala(text): return transliterate.process('Velthuis', 'Sinhala', text) # Load conversation model # conv_model_name = "microsoft/Phi-3-mini-4k-instruct" # Use GPT-2 instead of the gated model # tokenizer = AutoTokenizer.from_pretrained(conv_model_name, trust_remote_code=True) # model = AutoModelForCausalLM.from_pretrained(conv_model_name, trust_remote_code=True).to(device) client = InferenceClient("google/gemma-2b-it") def conversation_predict(text): return client.text_generation(text, return_full_text=False) # pipe = pipeline( # "text-generation", # model=model, # tokenizer=tokenizer, # ) # generation_args = { # "max_new_tokens": 500, # "return_full_text": False, # "temperature": 0.0, # "do_sample": False, # } # output = pipe(text, **generation_args) # return output[0]['generated_text'] # input_ids = tokenizer(text, return_tensors="pt").to(device) # outputs = model.generate(**input_ids) # return tokenizer.decode(outputs[0]) def ai_predicted(user_input): if user_input.lower() == 'exit': return "Goodbye!" user_input = translate_Singlish_to_sinhala(user_input) user_input = transliterate_to_sinhala(user_input) user_input = translate_sinhala_to_english(user_input) ai_response = conversation_predict(user_input) ai_response_lines = ai_response.split("") response = translate_english_to_sinhala(ai_response_lines[-1]) response = transliterate_from_sinhala(response) return response # Gradio Interface def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = ai_predicted(message) yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share=True)