Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the token classification model | |
pipe = pipeline("token-classification", model="Clinical-AI-Apollo/Medical-NER", aggregation_strategy='simple') | |
def classify_text(text): | |
# Get token classification results | |
result = pipe(text) | |
# Format the results to resemble the UI shown in the image | |
formatted_output = "" | |
for res in result: | |
entity = res['entity_group'] | |
word = res['word'] | |
score = res['score'] | |
start = res['start'] | |
end = res['end'] | |
formatted_output += f"Entity: {entity}, Word: {word}, Score: {score:.4f}, Span: [{start}:{end}]\n" | |
return formatted_output | |
# Gradio Interface | |
demo = gr.Interface( | |
fn=classify_text, | |
inputs=gr.Textbox(lines=5, label="Enter Medical Text"), | |
outputs=gr.Textbox(label="Entity Classification"), | |
title="Medical Entity Classification", | |
description="Enter medical-related text, and the model will classify medical entities.", | |
examples=[ | |
["45 year old woman diagnosed with CAD"], | |
["A 65-year-old male presents with acute chest pain and a history of hypertension."], | |
["The patient underwent a laparoscopic cholecystectomy."] | |
] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |