import gradio as gr import librosa from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import torch # config model_name = "vumichien/wav2vec2-large-xlsr-japanese-hiragana" processor = Wav2Vec2Processor.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) def process_audio_file(file): data, sr = librosa.load(file) if sr != 16000: data = librosa.resample(data, sr, 16000) print(data.shape) inputs = processor(data, sampling_rate=16000, return_tensors="pt", padding=True) return inputs def transcribe(micro, file): if file is not None and micro is None: input_audio = file elif file is None and micro is not None: input_audio = micro else: input_audio = file inputs = process_audio_file(input_audio ) with torch.no_grad(): output_logit = model(inputs.input_values, attention_mask=inputs.attention_mask).logits pred_ids = torch.argmax(output_logit, dim=-1) text = processor.batch_decode(pred_ids)[0] return text description = "A simple interface to transcribe from spoken Japanese to Hiragana." article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>." inputs = [gr.Audio(source="microphone", type="filepath", optional=True), gr.Audio(source="upload", type="filepath", optional=True), ] outputs = ["textbox"] # examples = [["samples/BASIC5000_0001.wav",""], # ["samples/BASIC5000_0005.wav",""] # ] iface = gr.Interface( fn=transcribe, inputs=inputs, outputs=outputs, layout="horizontal", theme="huggingface", title="Transcribe Japanese audio to Hiragana", description=description, article=article, allow_flagging='never', # examples=examples, live=True, ) iface.launch(enable_queue=True)