Spaces:
Sleeping
Sleeping
support 2 new endpoints
Browse files- main.py +13 -4
- models.py +27 -0
- routes/predict.py +107 -1
main.py
CHANGED
@@ -34,10 +34,19 @@ app = FastAPI(
|
|
34 |
version="1.0",
|
35 |
lifespan=lifespan,
|
36 |
openapi_tags=[
|
37 |
-
{
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
# Include Routers
|
|
|
34 |
version="1.0",
|
35 |
lifespan=lifespan,
|
36 |
openapi_tags=[
|
37 |
+
{
|
38 |
+
"name": "Health",
|
39 |
+
"description": "Health check endpoints",
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "Authentication",
|
43 |
+
"description": "User authentication and token management",
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "AI Model",
|
47 |
+
"description": "AI model endpoints for prediction and embedding",
|
48 |
+
},
|
49 |
+
],
|
50 |
)
|
51 |
|
52 |
# Include Routers
|
models.py
CHANGED
@@ -21,3 +21,30 @@ class UserInDB(User):
|
|
21 |
class UserCreate(BaseModel):
|
22 |
username: str
|
23 |
password: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class UserCreate(BaseModel):
|
22 |
username: str
|
23 |
password: str
|
24 |
+
|
25 |
+
|
26 |
+
class EmbeddingRequest(BaseModel):
|
27 |
+
sentences: list[str]
|
28 |
+
|
29 |
+
|
30 |
+
class PredictRecord(BaseModel):
|
31 |
+
subject: str
|
32 |
+
sub_subject: str
|
33 |
+
name_category: str
|
34 |
+
name: str
|
35 |
+
abstract: str | None = None
|
36 |
+
memo: str | None = None
|
37 |
+
|
38 |
+
|
39 |
+
class PredictResult(BaseModel):
|
40 |
+
standard_subject: str
|
41 |
+
standard_name: str
|
42 |
+
anchor_name: str
|
43 |
+
|
44 |
+
|
45 |
+
class PredictRawRequest(BaseModel):
|
46 |
+
records: list[PredictRecord]
|
47 |
+
|
48 |
+
|
49 |
+
class PredictRawResponse(BaseModel):
|
50 |
+
results: list[PredictResult]
|
routes/predict.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import time
|
3 |
import shutil
|
4 |
from pathlib import Path
|
5 |
-
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends
|
6 |
from fastapi.responses import FileResponse
|
7 |
from auth import get_current_user
|
8 |
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
|
@@ -10,6 +10,14 @@ from data_lib.input_name_data import InputNameData
|
|
10 |
from data_lib.base_name_data import COL_NAME_SENTENCE
|
11 |
from mapping_lib.name_mapper import NameMapper
|
12 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
router = APIRouter()
|
15 |
|
@@ -85,3 +93,101 @@ async def predict(
|
|
85 |
except Exception as e:
|
86 |
print(f"Error processing file: {e}")
|
87 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import time
|
3 |
import shutil
|
4 |
from pathlib import Path
|
5 |
+
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends, Body
|
6 |
from fastapi.responses import FileResponse
|
7 |
from auth import get_current_user
|
8 |
from services.sentence_transformer_service import SentenceTransformerService, sentence_transformer_service
|
|
|
10 |
from data_lib.base_name_data import COL_NAME_SENTENCE
|
11 |
from mapping_lib.name_mapper import NameMapper
|
12 |
from config import UPLOAD_DIR, OUTPUT_DIR
|
13 |
+
from models import (
|
14 |
+
EmbeddingRequest,
|
15 |
+
PredictRawRequest,
|
16 |
+
PredictRawResponse,
|
17 |
+
PredictRecord,
|
18 |
+
PredictResult,
|
19 |
+
)
|
20 |
+
import pandas as pd
|
21 |
|
22 |
router = APIRouter()
|
23 |
|
|
|
93 |
except Exception as e:
|
94 |
print(f"Error processing file: {e}")
|
95 |
raise HTTPException(status_code=500, detail=str(e))
|
96 |
+
|
97 |
+
|
98 |
+
@router.post("/embeddings")
|
99 |
+
async def create_embeddings(
|
100 |
+
request: EmbeddingRequest,
|
101 |
+
current_user=Depends(get_current_user),
|
102 |
+
sentence_service: SentenceTransformerService = Depends(
|
103 |
+
lambda: sentence_transformer_service
|
104 |
+
),
|
105 |
+
):
|
106 |
+
"""
|
107 |
+
Create embeddings for a list of input sentences (requires authentication)
|
108 |
+
"""
|
109 |
+
try:
|
110 |
+
embeddings = sentence_service.sentenceTransformerHelper.create_embeddings(
|
111 |
+
request.sentences
|
112 |
+
)
|
113 |
+
# Convert numpy array to list for JSON serialization
|
114 |
+
embeddings_list = embeddings.tolist()
|
115 |
+
return {"embeddings": embeddings_list}
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error creating embeddings: {e}")
|
118 |
+
raise HTTPException(status_code=500, detail=str(e))
|
119 |
+
|
120 |
+
|
121 |
+
@router.post("/predict-raw", response_model=PredictRawResponse)
|
122 |
+
async def predict_raw(
|
123 |
+
request: PredictRawRequest,
|
124 |
+
current_user=Depends(get_current_user),
|
125 |
+
sentence_service: SentenceTransformerService = Depends(
|
126 |
+
lambda: sentence_transformer_service
|
127 |
+
),
|
128 |
+
):
|
129 |
+
"""
|
130 |
+
Process raw input records and return standardized names (requires authentication)
|
131 |
+
"""
|
132 |
+
try:
|
133 |
+
# Convert input records to DataFrame
|
134 |
+
records_dict = {
|
135 |
+
"科目": [],
|
136 |
+
"中科目": [],
|
137 |
+
"分類": [],
|
138 |
+
"名称": [],
|
139 |
+
"摘要": [],
|
140 |
+
"備考": [],
|
141 |
+
"シート名": [], # Required by BaseNameData but not used
|
142 |
+
"行": [], # Required by BaseNameData but not used
|
143 |
+
}
|
144 |
+
|
145 |
+
for record in request.records:
|
146 |
+
records_dict["科目"].append(record.subject)
|
147 |
+
records_dict["中科目"].append(record.sub_subject)
|
148 |
+
records_dict["分類"].append(record.name_category)
|
149 |
+
records_dict["名称"].append(record.name)
|
150 |
+
records_dict["摘要"].append(record.abstract or "")
|
151 |
+
records_dict["備考"].append(record.memo or "")
|
152 |
+
records_dict["シート名"].append("") # Placeholder
|
153 |
+
records_dict["行"].append("") # Placeholder
|
154 |
+
|
155 |
+
df = pd.DataFrame(records_dict)
|
156 |
+
|
157 |
+
# Process input data
|
158 |
+
try:
|
159 |
+
inputData = InputNameData(sentence_service.dic_standard_subject)
|
160 |
+
# Use _add_raw_data instead of direct assignment
|
161 |
+
inputData._add_raw_data(df)
|
162 |
+
inputData.process_data(sentence_service.sentenceTransformerHelper)
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error processing input data: {e}")
|
165 |
+
raise HTTPException(status_code=500, detail=str(e))
|
166 |
+
|
167 |
+
# Map standard names
|
168 |
+
try:
|
169 |
+
nameMapper = NameMapper(
|
170 |
+
sentence_service.sentenceTransformerHelper,
|
171 |
+
sentence_service.standardNameMapData,
|
172 |
+
top_count=3,
|
173 |
+
)
|
174 |
+
df_predicted = nameMapper.predict(inputData)
|
175 |
+
except Exception as e:
|
176 |
+
print(f"Error mapping standard names: {e}")
|
177 |
+
raise HTTPException(status_code=500, detail=str(e))
|
178 |
+
|
179 |
+
# Convert results to response format
|
180 |
+
results = []
|
181 |
+
for _, row in df_predicted.iterrows():
|
182 |
+
result = PredictResult(
|
183 |
+
standard_subject=row["標準科目"],
|
184 |
+
standard_name=row["標準項目名"],
|
185 |
+
anchor_name=row["基準名称"],
|
186 |
+
)
|
187 |
+
results.append(result)
|
188 |
+
|
189 |
+
return PredictRawResponse(results=results)
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Error processing records: {e}")
|
193 |
+
raise HTTPException(status_code=500, detail=str(e))
|