import gradio as gr import os import random import datetime from utils import * file_url = "https://storage.googleapis.com/derendering_model/derendering_supp.zip" filename = "derendering_supp.zip" download_file(file_url, filename) unzip_file(filename) print("Downloaded and unzipped the file.") diagram = get_svg_content("derendering_supp/derender_diagram.svg") org = get_svg_content("org/cor.svg") org_content = f"{org}" gif_filenames = [ "christians.gif", "good.gif", "october.gif", "welcome.gif", "you.gif", "letter.gif", ] captions = [ "CHRISTIANS", "Good", "October", "WELOME", "you", "letter", ] gif_base64_strings = { caption: get_base64_encoded_gif(f"gifs/{name}") for caption, name in zip(captions, gif_filenames) } sketches = [ "bird.gif", "cat.gif", "coffee.gif", "penguin.gif", ] sketches_base64_strings = { name: get_base64_encoded_gif(f"sketches/{name}") for name in sketches } def demo(Dataset, Model, Output_Format): if Model == "Small-i": inkml_path = f"./derendering_supp/small-i_{Dataset}_inkml" elif Model == "Small-p": inkml_path = f"./derendering_supp/small-p_{Dataset}_inkml" elif Model == "Large-i": inkml_path = f"./derendering_supp/large-i_{Dataset}_inkml" now = datetime.datetime.now() random.seed(now.timestamp()) now = now.strftime("%Y-%m-%d %H:%M:%S") print( now, "Taking sample from dataset:", Dataset, "and model:", Model, "with output format:", Output_Format, ) path = f"./derendering_supp/{Dataset}/images_sample" samples = os.listdir(path) # Randomly pick a sample picked_samples = random.sample(samples, min(1, len(samples))) query_modes = ["d+t", "r+d", "vanilla"] plot_title = {"r+d": "Recognized: ", "d+t": "OCR Input: ", "vanilla": ""} text_outputs = [] img_outputs = [] video_outputs = [] for name in picked_samples: img_path = os.path.join(path, name) img = load_and_pad_img_dir(img_path) for mode in query_modes: example_id = name.strip(".png") inkml_file = os.path.join(inkml_path, mode, example_id + ".inkml") text_field = parse_inkml_annotations(inkml_file)["textField"] output_text = f"{plot_title[mode]}{text_field}" # Text output for three modes # d+t: OCR recognition input to the model # r+d: Recognition from the model # vanilla: None text_outputs.append(output_text) ink = inkml_to_ink(inkml_file) if Output_Format == "Image+Video": video_filename = mode + ".mp4" plot_ink_to_video(ink, video_filename, input_image=img) video_outputs.append(video_filename) else: video_outputs.append(None) fig, ax = plt.subplots() ax.axis("off") plot_ink(ink, ax, input_image=img) buf = BytesIO() fig.savefig(buf, format="png", bbox_inches="tight") plt.close(fig) buf.seek(0) res = Image.open(buf) img_outputs.append(res) return ( img, text_outputs[0], img_outputs[0], video_outputs[0], text_outputs[1], img_outputs[1], video_outputs[1], text_outputs[2], img_outputs[2], video_outputs[2], ) with gr.Blocks() as app: gr.HTML(org_content) gr.Markdown( "# InkSight: Offline-to-Online Handwriting Conversion by Learning to Read and Write" ) gr.HTML( """
📄 Read the Paper
""" ) gr.HTML(f"
{diagram}
") gr.Markdown( """ 🚀 This demo highlights the capabilities of Small-i, Small-p, and Large-i across three public datasets (word-level, with 100 random samples each).
🎲 Select a model variant and dataset (IAM, IMGUR5K, HierText), then hit 'Sample' to view a randomly selected input alongside its corresponding outputs for all three types of inference.
🖼️ Output options: Image or Image+Video. Opting for images yields quicker results, adding videos offers a dynamic view of the digital ink writing process.
""" ) with gr.Row(): dataset = gr.Dropdown( ["IAM", "IMGUR5K", "HierText"], label="Dataset", value="IAM" ) model = gr.Dropdown( ["Small-i", "Large-i", "Small-p"], label="InkSight Model Variant", value="Small-i", ) output_format = gr.Dropdown( ["Image", "Image+Video"], label="Output Format", value="Image" ) im = gr.Image(label="Input Image") with gr.Row(): d_t_img = gr.Image(label="Derender with Text") r_d_img = gr.Image(label="Recognize and Derender") vanilla_img = gr.Image(label="Vanilla") with gr.Row(): d_t_text = gr.Textbox( label="OCR recognition input to the model", interactive=False ) r_d_text = gr.Textbox(label="Recognition from the model", interactive=False) vanilla_text = gr.Textbox(label="Vanilla", interactive=False) gr.Markdown( "To visualize the writing process in video, select *Output format* as **Image+Video**." ) with gr.Row(): d_t_vid = gr.Video( label="Derender with Text (Click to stop/play)", autoplay=True ) r_d_vid = gr.Video( label="Recognize and Derender (Click to stop/play)", autoplay=True ) vanilla_vid = gr.Video(label="Vanilla (Click to stop/play)", autoplay=True) with gr.Row(): btn_sub = gr.Button("Sample") btn_sub.click( fn=demo, inputs=[dataset, model, output_format], outputs=[ im, d_t_text, d_t_img, d_t_vid, r_d_text, r_d_img, r_d_vid, vanilla_text, vanilla_img, vanilla_vid, ], ) gr.Markdown("## More Word-level Samples") html_content = """
""" for caption, base64_string in gif_base64_strings.items(): title = caption html_content += f"""
{title}

{title}

""" html_content += "
" gr.HTML(html_content) # Sketches gr.Markdown("## Sketch Samples") html_content = """
""" for _, base64_string in sketches_base64_strings.items(): html_content += f"""
""" html_content += "
" gr.HTML(html_content) gr.Markdown("## Scale Up to Full Page") svg1_content = get_svg_content("full_page/danke.svg") svg2_content = get_svg_content("full_page/multilingual_demo.svg") svg3_content = get_svg_content("full_page/unsplash_frame.svg") svg_html_template = """
{}

{}

{}

{}

{}

{}

""" full_svg_display = svg_html_template.format( svg1_content, 'Writings on the beach. Credit', svg2_content, "Multilingual handwriting.", svg3_content, "Handwriting in a frame. Credit", ) gr.HTML(full_svg_display) app.launch()