Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoModel, AutoTokenizer, MarianMTModel, MarianTokenizer
|
| 3 |
from PIL import Image
|
|
@@ -8,8 +9,8 @@ import re
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
# Check if GPU is available, else default to CPU
|
| 11 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
-
st.write(f"Using device: {device
|
| 13 |
|
| 14 |
# Load EasyOCR reader with English and Hindi language support
|
| 15 |
reader = easyocr.Reader(['en', 'hi']) # 'en' for English, 'hi' for Hindi
|
|
@@ -17,17 +18,14 @@ reader = easyocr.Reader(['en', 'hi']) # 'en' for English, 'hi' for Hindi
|
|
| 17 |
# Load the GOT-OCR2 model and tokenizer
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)
|
| 19 |
|
| 20 |
-
# Load the model
|
| 21 |
model = AutoModel.from_pretrained(
|
| 22 |
'stepfun-ai/GOT-OCR2_0',
|
| 23 |
trust_remote_code=True,
|
| 24 |
low_cpu_mem_usage=True,
|
| 25 |
-
device_map='auto' if device == 'cuda' else None, # Use GPU if available, else None
|
| 26 |
use_safetensors=True,
|
| 27 |
pad_token_id=tokenizer.eos_token_id
|
| 28 |
)
|
| 29 |
-
|
| 30 |
-
# Move model to appropriate device (GPU or CPU)
|
| 31 |
model = model.to(device)
|
| 32 |
model = model.eval()
|
| 33 |
|
|
@@ -61,14 +59,12 @@ if image_file is not None:
|
|
| 61 |
# Button to run OCR
|
| 62 |
if st.button("Run OCR"):
|
| 63 |
# Ensure model runs on CPU if GPU isn't available
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
with torch.no_grad(): # Disable gradient calculations to save memory on CPU
|
| 68 |
-
res_plain = model.chat(tokenizer, temp_file_path, ocr_type='ocr')
|
| 69 |
|
| 70 |
# Perform formatted text OCR
|
| 71 |
-
res_format = model.chat(tokenizer, temp_file_path, ocr_type='format')
|
| 72 |
|
| 73 |
# Use EasyOCR for both English and Hindi text recognition
|
| 74 |
result_easyocr = reader.readtext(temp_file_path, detail=0)
|
|
@@ -98,12 +94,12 @@ if image_file is not None:
|
|
| 98 |
st.write(" ".join(translated_text))
|
| 99 |
|
| 100 |
# Additional OCR types using GOT-OCR2
|
| 101 |
-
res_fine_grained = model.chat(tokenizer, temp_file_path, ocr_type='ocr', ocr_box='')
|
| 102 |
st.subheader("Fine-Grained OCR Results:")
|
| 103 |
st.write(res_fine_grained)
|
| 104 |
|
| 105 |
# Render formatted OCR to HTML
|
| 106 |
-
res_render = model.chat(tokenizer, temp_file_path, ocr_type='format', render=True, save_render_file='./demo.html')
|
| 107 |
st.subheader("Rendered OCR Results (HTML):")
|
| 108 |
st.write(res_render)
|
| 109 |
|
|
@@ -118,6 +114,3 @@ if image_file is not None:
|
|
| 118 |
|
| 119 |
# Clean up the temporary file after use
|
| 120 |
os.remove(temp_file_path)
|
| 121 |
-
|
| 122 |
-
# Note: No need for if __name__ == "__main__": st.run()
|
| 123 |
-
|
|
|
|
| 1 |
+
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import AutoModel, AutoTokenizer, MarianMTModel, MarianTokenizer
|
| 4 |
from PIL import Image
|
|
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
# Check if GPU is available, else default to CPU
|
| 12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
+
st.write(f"Using device: {device}")
|
| 14 |
|
| 15 |
# Load EasyOCR reader with English and Hindi language support
|
| 16 |
reader = easyocr.Reader(['en', 'hi']) # 'en' for English, 'hi' for Hindi
|
|
|
|
| 18 |
# Load the GOT-OCR2 model and tokenizer
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained('stepfun-ai/GOT-OCR2_0', trust_remote_code=True)
|
| 20 |
|
| 21 |
+
# Load the model and move it to the correct device (GPU if available, else CPU)
|
| 22 |
model = AutoModel.from_pretrained(
|
| 23 |
'stepfun-ai/GOT-OCR2_0',
|
| 24 |
trust_remote_code=True,
|
| 25 |
low_cpu_mem_usage=True,
|
|
|
|
| 26 |
use_safetensors=True,
|
| 27 |
pad_token_id=tokenizer.eos_token_id
|
| 28 |
)
|
|
|
|
|
|
|
| 29 |
model = model.to(device)
|
| 30 |
model = model.eval()
|
| 31 |
|
|
|
|
| 59 |
# Button to run OCR
|
| 60 |
if st.button("Run OCR"):
|
| 61 |
# Ensure model runs on CPU if GPU isn't available
|
| 62 |
+
with torch.no_grad(): # Disable gradient calculations to save memory on CPU
|
| 63 |
+
# Replace .cuda() with device handling based on CPU/GPU availability
|
| 64 |
+
res_plain = model.chat(tokenizer, temp_file_path, ocr_type='ocr', device=device)
|
|
|
|
|
|
|
| 65 |
|
| 66 |
# Perform formatted text OCR
|
| 67 |
+
res_format = model.chat(tokenizer, temp_file_path, ocr_type='format', device=device)
|
| 68 |
|
| 69 |
# Use EasyOCR for both English and Hindi text recognition
|
| 70 |
result_easyocr = reader.readtext(temp_file_path, detail=0)
|
|
|
|
| 94 |
st.write(" ".join(translated_text))
|
| 95 |
|
| 96 |
# Additional OCR types using GOT-OCR2
|
| 97 |
+
res_fine_grained = model.chat(tokenizer, temp_file_path, ocr_type='ocr', ocr_box='', device=device)
|
| 98 |
st.subheader("Fine-Grained OCR Results:")
|
| 99 |
st.write(res_fine_grained)
|
| 100 |
|
| 101 |
# Render formatted OCR to HTML
|
| 102 |
+
res_render = model.chat(tokenizer, temp_file_path, ocr_type='format', render=True, save_render_file='./demo.html', device=device)
|
| 103 |
st.subheader("Rendered OCR Results (HTML):")
|
| 104 |
st.write(res_render)
|
| 105 |
|
|
|
|
| 114 |
|
| 115 |
# Clean up the temporary file after use
|
| 116 |
os.remove(temp_file_path)
|
|
|
|
|
|
|
|
|