wangqinghehe commited on
Commit
638275e
·
1 Parent(s): 2dac737

0516_zerogpu

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -128,7 +128,7 @@ woman_Embedding_Manager = models.embedding_manager.EmbeddingManagerId_adain(
128
  loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
129
  vit_out_dim = input_dim,
130
  )
131
-
132
 
133
  DEFAULT_STYLE_NAME = "Watercolor"
134
  MAX_SEED = np.iinfo(np.int32).max
@@ -208,13 +208,13 @@ def generate_image(experiment_name, label, prompts_array, chose_emb):
208
  print("new")
209
  torch.save(random_embedding, ran_emb_path)
210
  _, emb_dict = Embedding_Manager(tokenized_text=None, embedded_text=None, name_batch=None, random_embeddings = random_embedding, timesteps = None,)
211
- text_encoder.text_model.embeddings.forward = original_forward
212
  test_emb = emb_dict["adained_total_embedding"].to(device)
213
  torch.save(test_emb, test_emb_path)
214
  elif label == "continue":
215
  print("old")
216
  test_emb = torch.load(chose_emb).cuda()
217
- text_encoder.text_model.embeddings.forward = original_forward
218
 
219
  v1_emb = test_emb[:, 0]
220
  v2_emb = test_emb[:, 1]
@@ -298,7 +298,6 @@ def run_for_examples(example_emb, gender_GAN, choice, prompts_array):
298
  print("label:",label)
299
 
300
  test_emb = torch.load(example_emb).cuda()
301
- text_encoder.text_model.embeddings.forward = original_forward
302
  v1_emb = test_emb[:, 0]
303
  v2_emb = test_emb[:, 1]
304
  embeddings = [v1_emb, v2_emb]
 
128
  loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
129
  vit_out_dim = input_dim,
130
  )
131
+ text_encoder.text_model.embeddings.forward = original_forward
132
 
133
  DEFAULT_STYLE_NAME = "Watercolor"
134
  MAX_SEED = np.iinfo(np.int32).max
 
208
  print("new")
209
  torch.save(random_embedding, ran_emb_path)
210
  _, emb_dict = Embedding_Manager(tokenized_text=None, embedded_text=None, name_batch=None, random_embeddings = random_embedding, timesteps = None,)
211
+ # text_encoder.text_model.embeddings.forward = original_forward
212
  test_emb = emb_dict["adained_total_embedding"].to(device)
213
  torch.save(test_emb, test_emb_path)
214
  elif label == "continue":
215
  print("old")
216
  test_emb = torch.load(chose_emb).cuda()
217
+ # text_encoder.text_model.embeddings.forward = original_forward
218
 
219
  v1_emb = test_emb[:, 0]
220
  v2_emb = test_emb[:, 1]
 
298
  print("label:",label)
299
 
300
  test_emb = torch.load(example_emb).cuda()
 
301
  v1_emb = test_emb[:, 0]
302
  v2_emb = test_emb[:, 1]
303
  embeddings = [v1_emb, v2_emb]