Spaces:
Paused
Paused
import os | |
import sys | |
from pathlib import Path | |
from collections import OrderedDict | |
import gradio as gr | |
import shutil | |
import uuid | |
import torch | |
from PIL import Image | |
import spaces | |
demo_path = Path(__file__).resolve().parent | |
root_path = demo_path | |
sys.path.append(str(root_path)) | |
from src import models | |
from src.methods import rasg, sd, sr | |
from src.utils import IImage, poisson_blend, image_from_url_text | |
TMP_DIR = root_path / 'gradio_tmp' | |
if TMP_DIR.exists(): | |
shutil.rmtree(str(TMP_DIR)) | |
TMP_DIR.mkdir(exist_ok=True, parents=True) | |
os.environ['GRADIO_TEMP_DIR'] = str(TMP_DIR) | |
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR" | |
negative_prompt_str = "text, bad anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated, out of frame, ugly, worst quality" | |
positive_prompt_str = "Full HD, 4K, high quality, high resolution" | |
examples_path = root_path / '__assets__/demo/examples' | |
example_inputs = [ | |
[f'{examples_path}/images_1024/a40.jpg', f'{examples_path}/images_2048/a40.jpg', 'medieval castle'], | |
] | |
thumbnails = [ | |
'https://lh3.googleusercontent.com/pw/ABLVV87bkFc_SRKrbXuk5BTp18dETNm18MLbjoJo6JvwbIkYtjZXrjU_H1dCJIP799OJjHTZmo19mYVyMCC1RLmwqzoZrgwQzfB-SCtxLa83IbXBQ23xzmKoZgsRlPztxNJD6gmXzFyatdLRzDxHIusBQLUz=w3580-h1150-s-no-gm', | |
] | |
example_previews = [ | |
[thumbnails[0], 'Prompt: medieval castle'], | |
] | |
# Load models | |
models.pre_download_inpainting_models() | |
inpainting_models = OrderedDict([ | |
("Dreamshaper Inpainting V8", 'ds8_inp'), | |
("Stable-Inpainting 2.0", 'sd2_inp'), | |
("Stable-Inpainting 1.5", 'sd15_inp') | |
]) | |
sr_model = None | |
sam_predictor = None | |
inp_model_name = list(inpainting_models.keys())[0] | |
inp_model = None | |
def load_models(): | |
global sr_model, sam_predictor, inp_model | |
sr_model = models.sd2_sr.load_model(device='cuda') | |
sam_predictor = models.sam.load_model(device='cuda') | |
inp_model = models.load_inpainting_model( | |
inpainting_models[inp_model_name], device='cuda', cache=True) | |
def set_model_from_name(new_inp_model_name): | |
global inp_model | |
global inp_model_name | |
if new_inp_model_name != inp_model_name: | |
print (f"Activating Inpaintng Model: {new_inp_model_name}") | |
inp_model = models.load_inpainting_model( | |
inpainting_models[new_inp_model_name], device='cuda', cache=True) | |
inp_model_name = new_inp_model_name | |
def save_user_session(hr_image, hr_mask, lr_results, prompt, session_id=None): | |
if session_id == '': | |
session_id = str(uuid.uuid4()) | |
session_dir = TMP_DIR / session_id | |
session_dir.mkdir(exist_ok=True, parents=True) | |
hr_image.save(session_dir / 'hr_image.png') | |
hr_mask.save(session_dir / 'hr_mask.png') | |
lr_results_dir = session_dir / 'lr_results' | |
if lr_results_dir.exists(): | |
shutil.rmtree(lr_results_dir) | |
lr_results_dir.mkdir(parents=True) | |
for i, lr_result in enumerate(lr_results): | |
lr_result.save(lr_results_dir / f'{i}.png') | |
with open(session_dir / 'prompt.txt', 'w') as f: | |
f.write(prompt) | |
return session_id | |
def recover_user_session(session_id): | |
if session_id == '': | |
return None, None, [], '' | |
session_dir = TMP_DIR / session_id | |
lr_results_dir = session_dir / 'lr_results' | |
hr_image = Image.open(session_dir / 'hr_image.png') | |
hr_mask = Image.open(session_dir / 'hr_mask.png') | |
lr_result_paths = list(lr_results_dir.glob('*.png')) | |
gallery = [] | |
for lr_result_path in sorted(lr_result_paths): | |
gallery.append(Image.open(lr_result_path)) | |
with open(session_dir / 'prompt.txt', "r") as f: | |
prompt = f.read() | |
return hr_image, hr_mask, gallery, prompt | |
def inpainting_run(model_name, use_rasg, use_painta, prompt, imageMask, | |
hr_image, seed, eta, negative_prompt, positive_prompt, ddim_steps, | |
guidance_scale=7.5, batch_size=1, session_id='' | |
): | |
torch.cuda.empty_cache() | |
set_model_from_name(model_name) | |
method = ['default'] | |
if use_painta: method.append('painta') | |
if use_rasg: method.append('rasg') | |
method = '-'.join(method) | |
if use_rasg: | |
inpainting_f = rasg.run | |
else: | |
inpainting_f = sd.run | |
seed = int(seed) | |
batch_size = max(1, min(int(batch_size), 4)) | |
image = IImage(hr_image).resize(512) | |
mask = IImage(imageMask['mask']).rgb().resize(512) | |
method = ['default'] | |
if use_painta: method.append('painta') | |
method = '-'.join(method) | |
inpainted_images = [] | |
blended_images = [] | |
for i in range(batch_size): | |
seed = seed + i * 1000 | |
inpainted_image = inpainting_f( | |
ddim=inp_model, | |
method=method, | |
prompt=prompt, | |
image=image, | |
mask=mask, | |
seed=seed, | |
eta=eta, | |
negative_prompt=negative_prompt, | |
positive_prompt=positive_prompt, | |
num_steps=ddim_steps, | |
guidance_scale=guidance_scale | |
).crop(image.size) | |
blended_image = poisson_blend( | |
orig_img=image.data[0], | |
fake_img=inpainted_image.data[0], | |
mask=mask.data[0], | |
dilation=12 | |
) | |
blended_images.append(blended_image) | |
inpainted_images.append(inpainted_image.pil()) | |
session_id = save_user_session( | |
hr_image, imageMask['mask'], inpainted_images, prompt, session_id=session_id) | |
return blended_images, session_id | |
def upscale_run( | |
ddim_steps, seed, use_sam_mask, session_id, img_index, | |
negative_prompt='', positive_prompt='high resolution professional photo' | |
): | |
hr_image, hr_mask, gallery, prompt = recover_user_session(session_id) | |
if len(gallery) == 0: | |
return Image.open(root_path / '__assets__/demo/sr_info.png') | |
torch.cuda.empty_cache() | |
seed = int(seed) | |
img_index = int(img_index) | |
img_index = 0 if img_index < 0 else img_index | |
img_index = len(gallery) - 1 if img_index >= len(gallery) else img_index | |
inpainted_image = gallery[img_index if img_index >= 0 else 0] | |
output_image = sr.run( | |
sr_model, | |
sam_predictor, | |
inpainted_image, | |
hr_image, | |
hr_mask, | |
prompt=f'{prompt}, {positive_prompt}', | |
noise_level=20, | |
blend_trick=True, | |
blend_output=True, | |
negative_prompt=negative_prompt, | |
seed=seed, | |
use_sam_mask=use_sam_mask | |
) | |
return output_image | |
with gr.Blocks(css=demo_path / 'style.css') as demo: | |
gr.HTML( | |
""" | |
""") | |
if on_huggingspace: | |
gr.HTML("""""") | |
with open(demo_path / 'script.js', 'r') as f: | |
js_str = f.read() | |
demo.load(_js=js_str) | |
with gr.Row(): | |
with gr.Column(): | |
model_picker = gr.Dropdown( | |
list(inpainting_models.keys()), | |
value=list(inpainting_models.keys())[0], | |
label = "Please select a model!", | |
) | |
with gr.Column(): | |
use_painta = gr.Checkbox(value = True, label = "Use PAIntA") | |
use_rasg = gr.Checkbox(value = True, label = "Use RASG") | |
prompt = gr.Textbox(label = "Inpainting Prompt") | |
with gr.Row(): | |
with gr.Column(): | |
imageMask = gr.ImageMask(label = "Input Image", brush_color='#ff0000', elem_id="inputmask", type="pil") | |
hr_image = gr.Image(visible=False, type="pil") | |
hr_image.change(fn=None, _js="function() {setTimeout(imageMaskResize, 200);}", inputs=[], outputs=[]) | |
imageMask.upload( | |
fn=None, | |
_js="async function (a) {hr_img = await resize_b64_img(a['image'], 2048); dp_img = await resize_b64_img(hr_img, 1024); return [hr_img, {image: dp_img, mask: null}]}", | |
inputs=[imageMask], | |
outputs=[hr_image, imageMask], | |
) | |
with gr.Row(): | |
inpaint_btn = gr.Button("Inpaint", scale = 0) | |
with gr.Accordion('Advanced options', open=False): | |
guidance_scale = gr.Slider(minimum = 0, maximum = 30, value = 7.5, label = "Guidance Scale") | |
eta = gr.Slider(minimum = 0, maximum = 1, value = 0.1, label = "eta") | |
ddim_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = 'Number of diffusion steps') | |
with gr.Row(): | |
seed = gr.Number(value = 49123, label = "Seed") | |
batch_size = gr.Number(value = 1, label = "Batch size", minimum=1, maximum=4) | |
negative_prompt = gr.Textbox(value=negative_prompt_str, label = "Negative prompt", lines=3) | |
positive_prompt = gr.Textbox(value=positive_prompt_str, label = "Positive prompt", lines=1) | |
with gr.Column(): | |
with gr.Row(): | |
output_gallery = gr.Gallery( | |
[], | |
columns = 4, | |
preview = True, | |
allow_preview = True, | |
object_fit='scale-down', | |
elem_id='outputgallery' | |
) | |
with gr.Row(): | |
upscale_btn = gr.Button("Send to Upscaler (x4)", scale = 1) | |
with gr.Row(): | |
use_sam_mask = gr.Checkbox(value = False, label = "Use SAM mask for background preservation") | |
with gr.Row(): | |
hires_image = gr.Image(label = "Hi-res Image") | |
label = gr.Markdown("## High-Resolution Generation Samples (2048px large side)") | |
with gr.Column(): | |
example_container = gr.Gallery( | |
example_previews, | |
columns = 4, | |
preview = True, | |
allow_preview = True, | |
object_fit='scale-down' | |
) | |
gr.Examples( | |
[example_inputs[i] + [[example_previews[i]]] | |
for i in range(len(example_previews))], | |
[imageMask, hr_image, prompt, example_container], | |
elem_id='examples' | |
) | |
session_id = gr.Textbox(value='', visible=False) | |
html_info = gr.HTML(elem_id=f'html_info', elem_classes="infotext") | |
inpaint_btn.click( | |
fn=inpainting_run, | |
inputs=[ | |
model_picker, | |
use_rasg, | |
use_painta, | |
prompt, | |
imageMask, | |
hr_image, | |
seed, | |
eta, | |
negative_prompt, | |
positive_prompt, | |
ddim_steps, | |
guidance_scale, | |
batch_size, | |
session_id | |
], | |
outputs=[output_gallery, session_id], | |
api_name="inpaint" | |
) | |
upscale_btn.click( | |
fn=upscale_run, | |
inputs=[ | |
ddim_steps, | |
seed, | |
use_sam_mask, | |
session_id, | |
html_info | |
], | |
outputs=[hires_image], | |
api_name="upscale", | |
_js="function(a, b, c, d, e){ return [a, b, c, d, selected_gallery_index()] }", | |
) | |
load_models() | |
demo.queue(max_size=20) | |
demo.launch(share=True, allowed_paths=[str(TMP_DIR)]) |