Spaces:
Runtime error
Runtime error
import gradio as gr | |
from fastai.vision.all import * | |
from PIL import Image as pilIm | |
# | |
#learn = load_learner('export.pkl') | |
#learn = torch.load('digit_classifier.pth') | |
#learn.eval() #switch to eval mode | |
model_dict=torch.load('my_model.pt') | |
W1,B1,W2,B2,W3,B3=model_dict['W1'],model_dict['B1'],model_dict['W2'],model_dict['B2'],model_dict['W3'],model_dict['B3'] | |
def mdlV2(xb): | |
res = xb@W1+B1 | |
res = res.max(tensor(0.)) | |
res = res@W2+B2 # returns 10 features for each input | |
res = res.max(tensor(0.)) | |
res = res@W3+B3 # returns 10 features for each input | |
return res | |
labels = [str(x) for x in range(10)] | |
# ################################# | |
# #Define class for importing Model | |
# class DigitClassifier(torch.nn.Module): | |
# def __init__(self): | |
# super().__init__() | |
# self.fc1 = torch.nn.Linear(64, 32) | |
# self.fc2 = torch.nn.Linear(32, 16) | |
# self.fc3 = torch.nn.Linear(16, 10) | |
# def forward(self, x): | |
# x = x.view(-1, 64) | |
# x = torch.relu(self.fc1(x)) | |
# x = torch.relu(self.fc2(x)) | |
# x = self.fc3(x) | |
# return x | |
######################################### | |
#Define function to reduce image of arbitrary size to 8x8 per model requirements. | |
def reduce_image_count(image): | |
output_size = (8, 8) | |
block_size = (image.shape[0] // output_size[0], image.shape[1] // output_size[1]) | |
output = np.zeros(output_size) | |
for i in range(output_size[0]): | |
for j in range(output_size[1]): | |
block = image[i*block_size[0]:(i+1)*block_size[0], j*block_size[1]:(j+1)*block_size[1]] | |
count = np.count_nonzero(block) | |
output[i, j] = count | |
normalizer=np.amax(output) | |
output=output*16/normalizer | |
return output | |
######################################### | |
def predict(img): | |
#First take input and reduce it to 8x8 px as the dataset was | |
pil_image = pilIm.open(img) #get image | |
gray_img = pil_image.convert('L')#grayscale | |
pic = np.array(gray_img) #convert to array | |
inp_img=reduce_image_count(pic)#Reduce image to required input size | |
z=Tensor(inp_img) | |
y=z.view(-1,64) | |
x=mdlV2(y) | |
w=F.softmax(x,dim=-1) | |
v=w[0] | |
u=v.data | |
otpt=u | |
#pred,pred_idx,probs = learn.predict(img) | |
return dict([[labels[i], float(otpt[i])] for i in range(len(labels))]),inp_img/16 | |
gr.Interface(fn=predict, inputs=gr.inputs.Image(type='filepath'), outputs=[gr.outputs.Label(num_top_classes=10), gr.outputs.Image()]).launch() |