File size: 6,886 Bytes
d8876d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
import math
import librosa

class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads
        self.W_q = nn.Linear(d_model, d_model)  # query
        self.W_k = nn.Linear(d_model, d_model)  # key
        self.W_v = nn.Linear(d_model, d_model)  # value
        self.W_o = nn.Linear(d_model, d_model)  # output

    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
        attn_probs = torch.softmax(attn_scores, dim=-1)
        output = torch.matmul(attn_probs, V)
        return output

    def split_heads(self, x):
        batch_size, seq_length, d_model = x.size()
        return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)

    def combine_heads(self, x):
        batch_size, _, seq_length, d_k = x.size()
        return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)

    def forward(self, Q, K, V, mask=None):
        Q = self.split_heads(self.W_q(Q))
        K = self.split_heads(self.W_k(K))
        V = self.split_heads(self.W_v(V))
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
        output = self.W_o(self.combine_heads(attn_output))
        return output


class PositionWiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super(PositionWiseFeedForward, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.relu = nn.ReLU()

    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))


class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x):
        self.pe = self.pe.to(x.device)
        return x + self.pe[:, :x.size(1)]


class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm2(x + self.dropout(ff_output))
        return x


class PhantomNet(nn.Module):
    def __init__(self, use_mode, feature_size, conv_projection, num_classes, num_heads=8, num_layers=6, d_ff=2048, dropout=0.1):
        super(PhantomNet, self).__init__()
        self.conv1 = nn.Conv1d(in_channels=1, out_channels=512, kernel_size=10, stride=5)
        self.conv2 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
        self.conv3 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
        self.conv4 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
        self.conv5 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
        self.conv6 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2)
        self.conv7 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2)
        self.use_mode = use_mode
        self.conv_projection = conv_projection
        self.num_classes = num_classes
        self.flatten = nn.Flatten()
        self.sigmoid = nn.Sigmoid()
        self.gelu = nn.GELU()
        self.relu = nn.ReLU()

        self.fcIntermidiate = nn.Linear(512, feature_size)
        self.positional_encoding = PositionalEncoding(feature_size, 10000)
        self.encoder_layers = nn.ModuleList(
            [EncoderLayer(feature_size, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.dropout = nn.Dropout(dropout)
        
        if self.conv_projection:
            self.convProjection = nn.Conv1d(feature_size, feature_size, kernel_size=128, stride=1)
        
        self.fc1 = nn.Linear(feature_size, feature_size)
        self.fc2 = nn.Linear(feature_size, 1, bias=True)

        
        if self.use_mode == 'spoof':
            #if there is a mismatch error, you will need to replace this input size.. currently working with 8 seconds samples
            #just multiply 95.760 * seconds the get this layer's input size
            #or I can just add another parameter to the model seq_length and input = seq_length * feature_size 
            self.fcSpoof = nn.Linear(286080, d_ff)
            self.fcFinal = nn.Linear(d_ff,self.num_classes)
            
        else:
            self.fcSpoof = None

    def forward(self, src):
        src = src.unsqueeze(1)
        src = self.gelu(self.conv1(src))
        src = self.gelu(self.conv2(src))
        src = self.gelu(self.conv3(src))
        src = self.gelu(self.conv4(src))
        src = self.gelu(self.conv5(src))
        src = self.gelu(self.conv6(src))
        src = self.gelu(self.conv7(src))
        src = src.permute(0, 2, 1)
        src = self.fcIntermidiate(src)
        src = src.permute(0, 2, 1)
        
        if self.conv_projection:
            src = self.gelu(self.convProjection(src))
        
        src = self.dropout(src)
        src = src.transpose(1, 2)
        src_embedded = self.dropout(self.positional_encoding(src))

        enc_output = src_embedded
        for enc_layer in self.encoder_layers:
            enc_output = enc_layer(enc_output, None)

        embeddings = self.fc1(enc_output)
        flatten_embeddings = self.flatten(embeddings)

        if self.use_mode == 'extractor':
            return embeddings
        elif self.use_mode == 'partialSpoof':
            return self.fc2(embeddings)
        elif self.use_mode == 'spoof':
            out_fcSpoof= self.fcSpoof(flatten_embeddings)
            output = self.fcFinal(out_fcSpoof)
           # output = self.sigmoid(self.fcSpoof(flatten_embeddings))
#            print(f"Model output shape: {output.shape}")
            return output
        else:
            raise ValueError('Wrong use mode of PhantomNet, please pick between extractor, partialSpoof, or spoof')