Spaces:
Sleeping
Sleeping
File size: 6,886 Bytes
d8876d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import torch
import torch.nn as nn
import math
import librosa
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
self.W_q = nn.Linear(d_model, d_model) # query
self.W_k = nn.Linear(d_model, d_model) # key
self.W_v = nn.Linear(d_model, d_model) # value
self.W_o = nn.Linear(d_model, d_model) # output
def scaled_dot_product_attention(self, Q, K, V, mask=None):
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
attn_probs = torch.softmax(attn_scores, dim=-1)
output = torch.matmul(attn_probs, V)
return output
def split_heads(self, x):
batch_size, seq_length, d_model = x.size()
return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
def combine_heads(self, x):
batch_size, _, seq_length, d_k = x.size()
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
def forward(self, Q, K, V, mask=None):
Q = self.split_heads(self.W_q(Q))
K = self.split_heads(self.W_k(K))
V = self.split_heads(self.W_v(V))
attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
output = self.W_o(self.combine_heads(attn_output))
return output
class PositionWiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super(PositionWiseFeedForward, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
self.relu = nn.ReLU()
def forward(self, x):
return self.fc2(self.relu(self.fc1(x)))
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_seq_length):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_seq_length, d_model)
position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
self.pe = self.pe.to(x.device)
return x + self.pe[:, :x.size(1)]
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads)
self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
attn_output = self.self_attn(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
ff_output = self.feed_forward(x)
x = self.norm2(x + self.dropout(ff_output))
return x
class PhantomNet(nn.Module):
def __init__(self, use_mode, feature_size, conv_projection, num_classes, num_heads=8, num_layers=6, d_ff=2048, dropout=0.1):
super(PhantomNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=512, kernel_size=10, stride=5)
self.conv2 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
self.conv3 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
self.conv4 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
self.conv5 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=3, stride=2)
self.conv6 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2)
self.conv7 = nn.Conv1d(in_channels=512, out_channels=512, kernel_size=2, stride=2)
self.use_mode = use_mode
self.conv_projection = conv_projection
self.num_classes = num_classes
self.flatten = nn.Flatten()
self.sigmoid = nn.Sigmoid()
self.gelu = nn.GELU()
self.relu = nn.ReLU()
self.fcIntermidiate = nn.Linear(512, feature_size)
self.positional_encoding = PositionalEncoding(feature_size, 10000)
self.encoder_layers = nn.ModuleList(
[EncoderLayer(feature_size, num_heads, d_ff, dropout) for _ in range(num_layers)])
self.dropout = nn.Dropout(dropout)
if self.conv_projection:
self.convProjection = nn.Conv1d(feature_size, feature_size, kernel_size=128, stride=1)
self.fc1 = nn.Linear(feature_size, feature_size)
self.fc2 = nn.Linear(feature_size, 1, bias=True)
if self.use_mode == 'spoof':
#if there is a mismatch error, you will need to replace this input size.. currently working with 8 seconds samples
#just multiply 95.760 * seconds the get this layer's input size
#or I can just add another parameter to the model seq_length and input = seq_length * feature_size
self.fcSpoof = nn.Linear(286080, d_ff)
self.fcFinal = nn.Linear(d_ff,self.num_classes)
else:
self.fcSpoof = None
def forward(self, src):
src = src.unsqueeze(1)
src = self.gelu(self.conv1(src))
src = self.gelu(self.conv2(src))
src = self.gelu(self.conv3(src))
src = self.gelu(self.conv4(src))
src = self.gelu(self.conv5(src))
src = self.gelu(self.conv6(src))
src = self.gelu(self.conv7(src))
src = src.permute(0, 2, 1)
src = self.fcIntermidiate(src)
src = src.permute(0, 2, 1)
if self.conv_projection:
src = self.gelu(self.convProjection(src))
src = self.dropout(src)
src = src.transpose(1, 2)
src_embedded = self.dropout(self.positional_encoding(src))
enc_output = src_embedded
for enc_layer in self.encoder_layers:
enc_output = enc_layer(enc_output, None)
embeddings = self.fc1(enc_output)
flatten_embeddings = self.flatten(embeddings)
if self.use_mode == 'extractor':
return embeddings
elif self.use_mode == 'partialSpoof':
return self.fc2(embeddings)
elif self.use_mode == 'spoof':
out_fcSpoof= self.fcSpoof(flatten_embeddings)
output = self.fcFinal(out_fcSpoof)
# output = self.sigmoid(self.fcSpoof(flatten_embeddings))
# print(f"Model output shape: {output.shape}")
return output
else:
raise ValueError('Wrong use mode of PhantomNet, please pick between extractor, partialSpoof, or spoof')
|