DanilO0o commited on
Commit
4453e09
·
1 Parent(s): afdf238

created streamlit app

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +65 -0
  3. clean_series_data.csv +3 -0
  4. embeddings.npy +3 -0
  5. requirements.txt +8 -0
.gitattributes CHANGED
@@ -2,6 +2,7 @@
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
5
  *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
 
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.csv filter=lfs diff=lfs merge=lfs -text
6
  *.ckpt filter=lfs diff=lfs merge=lfs -text
7
  *.ftz filter=lfs diff=lfs merge=lfs -text
8
  *.gz filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sentence_transformers import SentenceTransformer
3
+ import faiss
4
+ import numpy as np
5
+ import streamlit as st
6
+ import requests
7
+ from PIL import Image
8
+ from io import BytesIO
9
+
10
+
11
+ st.title('Рекомендации сериалов по описанию пользователя')
12
+ st.divider()
13
+
14
+ df = pd.read_csv('clean_series_data.csv')
15
+ embeddings = np.load('embeddings.npy')
16
+
17
+
18
+ def load_image_from_url(url):
19
+ try:
20
+ response = requests.get(url)
21
+ response.raise_for_status()
22
+ return Image.open(BytesIO(response.content))
23
+ except Exception as e:
24
+ st.error(f"Не удалось загрузить изображение: {e}")
25
+ return None
26
+
27
+
28
+ model = SentenceTransformer('cointegrated/rubert-tiny2')
29
+ model.cpu()
30
+ # embeddings_desc = df['Описание'].apply(lambda x: model.encode(x))
31
+ # embeddings_gan = df['Жанры'].apply(lambda x: model.encode(x))
32
+
33
+ # embeddings = embeddings_desc + embeddings_gan
34
+
35
+ embeddings = np.array(embeddings).astype(np.float32)
36
+ faiss.normalize_L2(embeddings)
37
+
38
+ dimension = embeddings.shape[1]
39
+ index = faiss.IndexFlatIP(dimension)
40
+
41
+ index.add(embeddings)
42
+
43
+ query = [st.text_area('Введите описание сериала')]
44
+ if query:
45
+ query_embedding = model.encode(query).astype(np.float32)
46
+
47
+ k = st.slider('Сколько сериалов рекомендовать?',
48
+ min_value=1, max_value=10, value=3, step=1)
49
+ distances, indices = index.search(query_embedding, k)
50
+
51
+ st.subheader('Похожие сериалы:')
52
+ for i in range(k):
53
+ url = df.loc[indices[0][i]]["Изображение"]
54
+ image = load_image_from_url(url)
55
+ st.image(image)
56
+ st.write(f'Название: {df.loc[indices[0][i]]["Название"]}')
57
+ st.write(f'Рейтинг: {df.loc[indices[0][i]]["Рейтинг"]}')
58
+ st.write(f'Страна: {df.loc[indices[0][i]]["Страна"]}')
59
+ st.write(
60
+ f'Длительность одной серии: {df.loc[indices[0][i]]["Длительность"]}')
61
+ st.write(
62
+ f'Количество серий: {df.loc[indices[0][i]]["Количество серий"]}')
63
+ st.write(f'Описание: {df.loc[indices[0][i]]["Описание"]}')
64
+ st.write(f'Косинусное сходство: {round(distances[0][i], 2)}')
65
+ st.divider()
clean_series_data.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:925177133ae0f6561279290bd5bf9e34df1014d8436fb8c05e39ac047412c44a
3
+ size 7397331
embeddings.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f005047f4c848ead774b1db9e0f3f3bc2ec18b0122b188e6770d579fdd71f0b0
3
+ size 8696192
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ sentence_transformers
4
+ faiss-cpu
5
+ numpy
6
+ requests
7
+ pillow
8
+