Spaces:
Sleeping
Sleeping
File size: 1,671 Bytes
a99ddf7 de7d9c4 2269551 de7d9c4 2269551 de7d9c4 2269551 de7d9c4 2269551 de7d9c4 2269551 de7d9c4 a99ddf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "178f75ea",
"metadata": {},
"outputs": [],
"source": [
"from fastai.vision.all import *\n",
"import gradio as gr\n",
"\n",
"def is_cat(x): return x[0].isupper()\n",
"\n",
"learn = load_learner('model.pkl')\n",
"\n",
"categories = ('Dog', 'Cat')\n",
"\n",
"def classify_image(img):\n",
" pred, idx, probs = learn.predict(img)\n",
" return(dict(zip(categories, map(float, probs))))\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "45599222",
"metadata": {},
"outputs": [],
"source": [
"image = gr.Image(shape=(192, 192))\n",
"label = gr.Label()\n",
"examples = ['Dog.jpg', 'Cat.jpg', 'Dunno.jpg']"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8eda394f",
"metadata": {},
"outputs": [],
"source": [
"intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
"intf.launch(inline=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4949615",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|