import gradio as gr import fastai from fastai.vision.all import * learn = load_learner("export.pkl") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = 'Animal Classifier' description = 'Animal classifier tried with downloaded data from internet. Created as a demo for Gradio and HuggingFace Spaces.' examples = ['c.jpeg', 'e.jpeg', 'e2.jpeg', 'e3.jpeg', 'g.jpeg', 'ec.jpeg'] interpretation = 'default' enable_queue = True gr.Interface(fn = predict, inputs = gr.inputs.Image(shape=(224,224)), outputs = gr.outputs.Label(num_top_classes = 4), title = title, description = description, examples = examples, interpretation = interpretation, enable_queue = enable_queue ).launch(share = False)