import gradio as gr from fastai.vision.all import * def get_headcount(filepath): filepath = str(filepath) filename = filepath.split('/')[-1] return df[df['Name'] == filename]['HeadCount'].values[0] learn = load_learner('export_ver2.pkl') def predict(img): img = PILImage.create(img) op = learn.predict(img) return int(op[0][0]) title = "Face count" description = "This model that is trained to counts the number of faces in the uploaded picture." eg = ['cam_mit.jpg', 'dunphys.jpg', 'group.jpg'] gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Textbox(type="number", label="Number of faces"), title=title, description=description, examples=eg, ).launch(share=False)