Spaces:
Sleeping
Sleeping
Akyl
commited on
Commit
Β·
5a1a242
1
Parent(s):
e778278
fix issue 2
Browse files
app.py
CHANGED
@@ -7,24 +7,30 @@ from timeit import default_timer as timer
|
|
7 |
from typing import Tuple, Dict
|
8 |
|
9 |
# Setup class names
|
10 |
-
class_names = [
|
11 |
|
12 |
### 2. Model and transforms preparation ###
|
|
|
13 |
# Create EffNetB2 model
|
14 |
-
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
|
|
|
|
15 |
|
16 |
# Load saved weights
|
17 |
effnetb2.load_state_dict(
|
18 |
torch.load(
|
19 |
-
f=
|
20 |
-
map_location=torch.device(
|
21 |
)
|
22 |
)
|
23 |
|
|
|
24 |
### 3. Predict function ###
|
|
|
25 |
# Create predict function
|
26 |
def predict(img) -> Tuple[Dict, float]:
|
27 |
-
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
|
|
28 |
# Start the timer
|
29 |
start_time = timer()
|
30 |
|
@@ -37,7 +43,7 @@ def predict(img) -> Tuple[Dict, float]:
|
|
37 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
38 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
39 |
|
40 |
-
# Create a prediction label and prediction probability dictionary for each prediction class
|
41 |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
42 |
|
43 |
# Calculate the prediction time
|
@@ -46,29 +52,28 @@ def predict(img) -> Tuple[Dict, float]:
|
|
46 |
# Return the prediction dictionary and prediction time
|
47 |
return pred_labels_and_probs, pred_time
|
48 |
|
|
|
|
|
|
|
49 |
# Create title, description and article strings
|
50 |
title = "FoodVision Mini ππ₯©π£"
|
51 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
52 |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
53 |
|
54 |
-
# Create examples list from
|
55 |
-
example_list = [[
|
56 |
-
|
57 |
-
# Create
|
58 |
-
demo = gr.Interface(
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# Launch the demo
|
72 |
demo.launch()
|
73 |
-
|
74 |
-
|
|
|
7 |
from typing import Tuple, Dict
|
8 |
|
9 |
# Setup class names
|
10 |
+
class_names = ["pizza", "steak", "sushi"]
|
11 |
|
12 |
### 2. Model and transforms preparation ###
|
13 |
+
|
14 |
# Create EffNetB2 model
|
15 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(
|
16 |
+
num_classes=3, # len(class_names) would also work
|
17 |
+
)
|
18 |
|
19 |
# Load saved weights
|
20 |
effnetb2.load_state_dict(
|
21 |
torch.load(
|
22 |
+
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
23 |
+
map_location=torch.device("cpu"), # load to CPU
|
24 |
)
|
25 |
)
|
26 |
|
27 |
+
|
28 |
### 3. Predict function ###
|
29 |
+
|
30 |
# Create predict function
|
31 |
def predict(img) -> Tuple[Dict, float]:
|
32 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
33 |
+
"""
|
34 |
# Start the timer
|
35 |
start_time = timer()
|
36 |
|
|
|
43 |
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
44 |
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
45 |
|
46 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
47 |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
48 |
|
49 |
# Calculate the prediction time
|
|
|
52 |
# Return the prediction dictionary and prediction time
|
53 |
return pred_labels_and_probs, pred_time
|
54 |
|
55 |
+
|
56 |
+
### 4. Gradio app ###
|
57 |
+
|
58 |
# Create title, description and article strings
|
59 |
title = "FoodVision Mini ππ₯©π£"
|
60 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
61 |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
62 |
|
63 |
+
# Create examples list from "examples/" directory
|
64 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
65 |
+
|
66 |
+
# Create the Gradio demo
|
67 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
68 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
69 |
+
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
|
70 |
+
gr.Number(label="Prediction time (s)")],
|
71 |
+
# our fn has two outputs, therefore we have two outputs
|
72 |
+
# Create examples list from "examples/" directory
|
73 |
+
examples=example_list,
|
74 |
+
title=title,
|
75 |
+
description=description,
|
76 |
+
article=article)
|
77 |
+
|
78 |
+
# Launch the demo!
|
|
|
|
|
79 |
demo.launch()
|
|
|
|