DR-Rakshitha commited on
Commit
b96ad8e
·
1 Parent(s): 70226f5

update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -59
app.py CHANGED
@@ -23,65 +23,6 @@ download_file(ggml_model_path, filename)
23
  llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
24
 
25
 
26
- def generate_text(prompt="Who is the CEO of Apple?"):
27
- output = llm(
28
- prompt,
29
- max_tokens=256,
30
- temperature=0.1,
31
- top_p=0.5,
32
- echo=False,
33
- stop=["#"],
34
- )
35
- output_text = output["choices"][0]["text"].strip()
36
-
37
- # Remove Prompt Echo from Generated Text
38
- cleaned_output_text = output_text.replace(prompt, "")
39
- return cleaned_output_text
40
-
41
-
42
- description = "Vicuna-7B"
43
-
44
- examples = [
45
- ["What is the capital of France?", "The capital of France is Paris."],
46
- [
47
- "Who wrote the novel 'Pride and Prejudice'?",
48
- "The novel 'Pride and Prejudice' was written by Jane Austen.",
49
- ],
50
- ["What is the square root of 64?", "The square root of 64 is 8."],
51
- ]
52
-
53
- gradio_interface = gr.Interface(
54
- fn=generate_text,
55
- inputs="text",
56
- outputs="text",
57
- examples=examples,
58
- title="Vicuna-7B",
59
- )
60
- gradio_interface.launch()import os
61
- import urllib.request
62
- import gradio as gr
63
- from llama_cpp import Llama
64
-
65
-
66
- def download_file(file_link, filename):
67
- # Checks if the file already exists before downloading
68
- if not os.path.isfile(filename):
69
- urllib.request.urlretrieve(file_link, filename)
70
- print("File downloaded successfully.")
71
- else:
72
- print("File already exists.")
73
-
74
-
75
- # Dowloading GGML model from HuggingFace
76
- ggml_model_path = "https://huggingface.co/CRD716/ggml-vicuna-1.1-quantized/resolve/main/ggml-vicuna-7b-1.1-q4_1.bin"
77
- filename = "ggml-vicuna-7b-1.1-q4_1.bin"
78
-
79
- download_file(ggml_model_path, filename)
80
-
81
-
82
- llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
83
-
84
-
85
  def generate_text(prompt="Who is the CEO of Apple?"):
86
  output = llm(
87
  prompt,
 
23
  llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
24
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  def generate_text(prompt="Who is the CEO of Apple?"):
27
  output = llm(
28
  prompt,