import gradio as gr import wave import numpy as np from io import BytesIO from huggingface_hub import hf_hub_download from piper import PiperVoice from transformers import pipeline # Load the NSFW classifier model nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier") def synthesize_speech(text): # Check for NSFW content nsfw_result = nsfw_detector(text) if nsfw_result[0]['label'] == 'NSFW': return "NSFW content detected. Cannot process.", None model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx") config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx.json") voice = PiperVoice.load(model_path, config_path) # Create an in-memory buffer for the WAV file buffer = BytesIO() with wave.open(buffer, 'wb') as wav_file: wav_file.setframerate(voice.config.sample_rate) wav_file.setsampwidth(2) # 16-bit wav_file.setnchannels(1) # mono # Synthesize speech voice.synthesize(text, wav_file) # Convert buffer to NumPy array for Gradio output buffer.seek(0) audio_data = np.frombuffer(buffer.read(), dtype=np.int16) return audio_data.tobytes(), None # Gradio Interface with gr.Blocks(theme=gr.themes.Base()) as blocks: gr.Markdown("# Text to Speech Synthesizer") gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.") input_text = gr.Textbox(label="Input Text") output_audio = gr.Audio(label="Synthesized Speech", type="numpy") output_text = gr.Textbox(label="Output Text", visible=True) # Make this visible for error messages submit_button = gr.Button("Synthesize") def process_and_output(text): audio, message = synthesize_speech(text) if message: return None, message # Return None for audio and the error message else: return audio, None # Return the audio data and None for the message submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text]) # Run the app blocks.launch()