import gradio as gr import wave import numpy as np from io import BytesIO from huggingface_hub import hf_hub_download from piper import PiperVoice from transformers import pipeline # Import necessary libraries: # gradio for creating the web interface, # wave for handling WAV audio format, # numpy for numerical operations, # BytesIO for in-memory byte handling, # huggingface_hub for downloading models from the Hugging Face Hub, # PiperVoice for the text-to-speech functionality, # pipeline from transformers for the NSFW classifier. # Load the NSFW classifier model using Hugging Face's pipeline nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier") def synthesize_speech(text): # Check for NSFW content using the classifier nsfw_result = nsfw_detector(text) # Extract the label and score from the result label = nsfw_result[0]['label'] score = nsfw_result[0]['score'] # First, check if the input text contains NSFW content. #nsfw_result = nsfw_detector(text) if label == 'NSFW' and score >= 0.95: # Download and read the error audio file error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav") with open(error_audio_path, 'rb') as error_audio_file: error_audio = error_audio_file.read() # Return the error audio and a warning message return error_audio, "NSFW content detected. Cannot process." # If the content is safe, proceed with speech synthesis. # Download the model and configuration from Hugging Face Hub. model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx") config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__1234_model.onnx.json") # Load the PiperVoice model for speech synthesis. voice = PiperVoice.load(model_path, config_path) # Create a BytesIO buffer to hold the synthesized WAV file in memory. buffer = BytesIO() with wave.open(buffer, 'wb') as wav_file: # Set WAV file properties: sample rate, bit depth, and mono channel. wav_file.setframerate(voice.config.sample_rate) wav_file.setsampwidth(2) # 16-bit wav_file.setnchannels(1) # mono # Use the PiperVoice model to synthesize speech from the text. voice.synthesize(text, wav_file) # Convert the buffer content to a NumPy array, then to bytes for Gradio output. buffer.seek(0) audio_data = np.frombuffer(buffer.read(), dtype=np.int16) return audio_data.tobytes(), None # Set up the Gradio interface. with gr.Blocks(theme=gr.themes.Base()) as blocks: # Create a user-friendly markdown title and description. gr.Markdown("# Text to Speech Synthesizer") gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection using Piper.") # Define Gradio interface components: input textbox, audio output, and output textbox. input_text = gr.Textbox(label="Input Text") output_audio = gr.Audio(label="Synthesized Speech", type="numpy") output_text = gr.Textbox(label="Output Text", visible=True) # Visible for error messages # Define a function to process the input text and produce outputs. def process_and_output(text): audio, message = synthesize_speech(text) if message: # If there's a message (e.g., an error message), return None for audio and the message. return None, message else: # Otherwise, return the synthesized audio and None for the message. return audio, None # Link the processing function to the Gradio interface button. submit_button = gr.Button("Synthesize") submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text]) # Launch the Gradio web application. blocks.launch()