import gradio as gr import wave import numpy as np from io import BytesIO from huggingface_hub import hf_hub_download from piper import PiperVoice from transformers import pipeline # Load the NSFW classifier model nsfw_detector = pipeline("text-classification", model="michellejieli/NSFW_text_classifier") def synthesize_speech(text): # Check for NSFW content using the classifier nsfw_result = nsfw_detector(text) label = nsfw_result[0]['label'] score = nsfw_result[0]['score'] if label == 'NSFW' and score >= 0.95: error_audio_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="error_audio.wav") # Read the error audio file try: with wave.open(error_audio_path, 'rb') as error_audio_file: frames = error_audio_file.readframes(error_audio_file.getnframes()) error_audio_data = np.frombuffer(frames, dtype=np.int16).tobytes() except Exception as e: print(f"Error reading audio file: {e}") return None, "Error in processing audio file." return error_audio_data, "NSFW content detected. Cannot process." model_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx") config_path = hf_hub_download(repo_id="DLI-SLQ/speaker_01234", filename="speaker__01234_model.onnx.json") voice = PiperVoice.load(model_path, config_path) buffer = BytesIO() with wave.open(buffer, 'wb') as wav_file: wav_file.setframerate(voice.config.sample_rate) wav_file.setsampwidth(2) wav_file.setnchannels(1) voice.synthesize(text, wav_file, sentence_silence=0.75, length_scale=1.2) buffer.seek(0) audio_data = np.frombuffer(buffer.read(), dtype=np.int16) return audio_data.tobytes(), None # Gradio Interface with gr.Blocks(theme=gr.themes.Base(),css="footer {visibility: hidden}") as blocks: gr.Markdown("# Text to Speech Synthesizer") gr.Markdown("Enter text to synthesize it into speech using models from the State Library of Queensland's collection. This model uses data from the following collections: Suzanne Mulligan Oral Histories Archive, the Peter Gray audio tapes, Five Years On : Toowoomba and Lockyer Valley flash floods: oral history interviews and Our Rocklea: connecting with the heart through story and creativity 2012.") input_text = gr.Textbox(label="Input Text") submit_button = gr.Button("Synthesize") output_audio = gr.Audio(label="Synthesized Speech", type="numpy", show_download_button=False) output_text = gr.Textbox(label="Output Text", visible=False) def process_and_output(text): audio, message = synthesize_speech(text) if message: return audio, message else: return audio, None submit_button.click(process_and_output, inputs=input_text, outputs=[output_audio, output_text]) blocks.launch()