Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
file_urls = [ | |
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1', | |
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1', | |
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' | |
] | |
def download_file(url, save_name): | |
if not os.path.exists(save_name): | |
file = requests.get(url) | |
open(save_name, 'wb').write(file.content) | |
for i, url in enumerate(file_urls): | |
if 'mp4' in file_urls[i]: | |
download_file(file_urls[i], f"video.mp4") | |
else: | |
download_file(file_urls[i], f"image_{i}.jpg") | |
model = YOLO('best.pt') | |
path = [['image_0.jpg'], ['image_1.jpg']] | |
video_path = [['video.mp4']] | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for det in results.boxes.xyxy: | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = gr.Image(type="filepath", label="Input Image") | |
outputs_image = gr.Image(label="Output Image") | |
def show_preds_video(video_path): | |
output_path = "processed_video.mp4" | |
cap = cv2.VideoCapture(video_path) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, cap.get(cv2.CAP_PROP_FPS), | |
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for det in results.boxes.xyxy: | |
cv2.rectangle( | |
frame, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
out.write(frame) | |
cap.release() | |
out.release() | |
return output_path | |
inputs_video = gr.Video(label="Input Video") | |
outputs_video = gr.Video(label="Output Video") | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole Detector App (Image)", | |
examples=path, | |
cache_examples=False, | |
) | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Pothole Detector App (Video)", | |
examples=video_path, | |
cache_examples=False, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image Inference', 'Video Inference'] | |
).queue().launch() |