DJakie's picture
Upload 5 files
c1576bc verified
import gradio as gr
import cv2
import requests
import os
from ultralytics import YOLO
file_urls = [
'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
]
def download_file(url, save_name):
if not os.path.exists(save_name):
file = requests.get(url)
open(save_name, 'wb').write(file.content)
for i, url in enumerate(file_urls):
if 'mp4' in file_urls[i]:
download_file(file_urls[i], f"video.mp4")
else:
download_file(file_urls[i], f"image_{i}.jpg")
model = YOLO('best.pt')
path = [['image_0.jpg'], ['image_1.jpg']]
video_path = [['video.mp4']]
def show_preds_image(image_path):
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
for det in results.boxes.xyxy:
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = gr.Image(type="filepath", label="Input Image")
outputs_image = gr.Image(label="Output Image")
def show_preds_video(video_path):
output_path = "processed_video.mp4"
cap = cv2.VideoCapture(video_path)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, cap.get(cv2.CAP_PROP_FPS),
(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for det in results.boxes.xyxy:
cv2.rectangle(
frame,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
out.write(frame)
cap.release()
out.release()
return output_path
inputs_video = gr.Video(label="Input Video")
outputs_video = gr.Video(label="Output Video")
interface_image = gr.Interface(
fn=show_preds_image,
inputs=inputs_image,
outputs=outputs_image,
title="Pothole Detector App (Image)",
examples=path,
cache_examples=False,
)
interface_video = gr.Interface(
fn=show_preds_video,
inputs=inputs_video,
outputs=outputs_video,
title="Pothole Detector App (Video)",
examples=video_path,
cache_examples=False,
)
gr.TabbedInterface(
[interface_image, interface_video],
tab_names=['Image Inference', 'Video Inference']
).queue().launch()