|
import os |
|
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
|
from PIL import ImageDraw |
|
import streamlit as st |
|
|
|
import torch |
|
from docquery.pipeline import get_pipeline |
|
from docquery.document import load_bytes, load_document |
|
|
|
|
|
def ensure_list(x): |
|
if isinstance(x, list): |
|
return x |
|
else: |
|
return [x] |
|
|
|
|
|
@st.experimental_singleton |
|
def construct_pipeline(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
ret = get_pipeline(device=device) |
|
return ret |
|
|
|
|
|
@st.cache |
|
def run_pipeline(question, document, top_k): |
|
return construct_pipeline()(question=question, **document.context, top_k=top_k) |
|
|
|
|
|
|
|
|
|
def lift_word_boxes(document): |
|
return document.context["image"][0][1] |
|
|
|
|
|
def expand_bbox(word_boxes): |
|
if len(word_boxes) == 0: |
|
return None |
|
|
|
min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes]) |
|
return [min(min_x), min(min_y), max(max_x), max(max_y)] |
|
|
|
|
|
|
|
def normalize_bbox(box, width, height): |
|
pct = [c / 1000 for c in box] |
|
return [pct[0] * width, pct[1] * height, pct[2] * width, pct[3] * height] |
|
|
|
|
|
st.markdown("# DocQuery: Query Documents w/ NLP") |
|
|
|
if "document" not in st.session_state: |
|
st.session_state["document"] = None |
|
|
|
input_type = st.radio("Pick an input type", ["Upload", "URL"], horizontal=True) |
|
|
|
|
|
def load_file_cb(): |
|
if st.session_state.file_input is None: |
|
return |
|
|
|
file = st.session_state.file_input |
|
with loading_placeholder: |
|
with st.spinner("Processing..."): |
|
document = load_bytes(file, file.name) |
|
_ = document.context |
|
st.session_state.document = document |
|
|
|
|
|
def load_url_cb(): |
|
if st.session_state.url_input is None: |
|
return |
|
|
|
url = st.session_state.url_input |
|
with loading_placeholder: |
|
with st.spinner("Downloading..."): |
|
document = load_document(url) |
|
with st.spinner("Processing..."): |
|
_ = document.context |
|
st.session_state.document = document |
|
|
|
|
|
if input_type == "Upload": |
|
file = st.file_uploader( |
|
"Upload a PDF or Image document", key="file_input", on_change=load_file_cb |
|
) |
|
|
|
elif input_type == "URL": |
|
|
|
url = st.text_input("URL", "", key="url_input", on_change=load_url_cb) |
|
|
|
question = st.text_input("QUESTION", "") |
|
|
|
document = st.session_state.document |
|
loading_placeholder = st.empty() |
|
if document is not None: |
|
col1, col2 = st.columns([3, 1]) |
|
image = document.preview |
|
|
|
|
|
colors = ["blue", "red", "green"] |
|
if document is not None and question is not None and len(question) > 0: |
|
col2.header("Answers") |
|
|
|
predictions = run_pipeline(question=question, document=document, top_k=1) |
|
|
|
word_boxes = lift_word_boxes(document) |
|
image = image.copy() |
|
draw = ImageDraw.Draw(image) |
|
for i, p in enumerate(ensure_list(predictions)): |
|
col2.markdown(f"#### { p['answer'] }: ({round(p['score'] * 100, 1)}%)") |
|
x1, y1, x2, y2 = normalize_bbox( |
|
expand_bbox(word_boxes[p["start"] : p["end"] + 1]), |
|
image.width, |
|
image.height, |
|
) |
|
draw.rectangle(((x1, y1), (x2, y2)), outline=colors[i]) |
|
|
|
if document is not None: |
|
col1.image(image, use_column_width=True) |
|
|
|
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." |
|
|
|
"[Github Repo](https://github.com/impira/docquery)" |
|
|