CODEXspace / tinyllama_inference.py
DEADLOCK007X's picture
Update tinyllama_inference.py
87e26da verified
raw
history blame
1.65 kB
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
def load_model():
# Use a public model for code evaluation.
model_name = "Salesforce/codegen-350M-mono"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def evaluate_code(question, code):
# Construct a prompt for the AI evaluator.
prompt = f"""
You are an expert code evaluator.
Rate the user's solution to the following problem from 0-5 (0 = completely incorrect, 5 = excellent).
Also provide a concise "feedback" message.
Problem: "{question}"
Solution: "{code}"
Return ONLY valid JSON: {{"stars": number, "feedback": string}}
Do not include any extra text outside the JSON.
"""
# Load model and tokenizer (for simplicity, we load them per request; consider caching for performance)
tokenizer, model = load_model()
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=150)
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
try:
result = json.loads(response_text.strip())
except Exception as e:
result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
return result
# For direct testing from the command line:
if __name__ == "__main__":
import sys
if len(sys.argv) < 3:
print(json.dumps({"error": "Please provide a question and code as arguments"}))
else:
question = sys.argv[1]
code = sys.argv[2]
result = evaluate_code(question, code)
print(json.dumps(result))