File size: 16,058 Bytes
863d8a3
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb14f7
a81bf47
 
1bb14f7
 
 
 
 
 
a81bf47
 
 
 
 
 
 
 
 
 
 
 
 
 
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
e3a17c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863d8a3
 
264c5ec
 
 
 
 
 
 
 
 
789383a
 
 
d4a7c84
789383a
863d8a3
 
e3a17c0
863d8a3
 
 
 
e3a17c0
863d8a3
 
 
 
 
e3a17c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863d8a3
 
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
a81bf47
863d8a3
 
 
 
 
 
 
 
264c5ec
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
 
863d8a3
e3a17c0
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a17c0
863d8a3
 
 
 
 
 
 
a81bf47
863d8a3
264c5ec
863d8a3
 
 
 
 
 
a81bf47
 
 
 
863d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import requests
import json
import yaml
import scipdf
import os
import time
import aiohttp
import asyncio
import numpy as np
import random

def get_content_between_a_b(start_tag, end_tag, text):
    extracted_text = ""
    start_index = text.find(start_tag)
    while start_index != -1:
        end_index = text.find(end_tag, start_index + len(start_tag))
        if end_index != -1:
            extracted_text += text[start_index + len(start_tag) : end_index] + " "
            start_index = text.find(start_tag, end_index + len(end_tag))
        else:
            break
    return extracted_text.strip()


def extract(text, type):
    if text:
        target_str = get_content_between_a_b(f"<{type}>", f"</{type}>", text)
        if target_str:
            return target_str
        else:
            return text
    else:
        return ""

def download(url):
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) '
                          'AppleWebKit/537.36 (KHTML, like Gecko) '
                          'Chrome/87.0.4280.88 Safari/537.36'
        }  # Mimic a common browser's User-Agent
        response = requests.get(url,headers=headers,timeout=120)
        if response.status_code == 200:
            return response.content
        else:
            print(f"Failed to download the file from the URL: {url}")
            return None
    except requests.RequestException as e:
        print(f"An error occurred while downloading the file from the URL: {url}")
        print(e)
        return None
    except Exception as e:
        print(f"An unexpected error occurred while downloading the file from the URL: {url}")
        print(e)
        return None
    
class Result:
    def __init__(self,title="",abstract="",article = "",citations_conut = 0,year = None) -> None:
        self.title = title
        self.abstract = abstract
        self.article = article
        self.citations_conut = citations_conut
        self.year = year

# Define the API endpoint URL

semantic_fields = ["title", "abstract", "year", "authors.name", "authors.paperCount", "authors.citationCount","authors.hIndex","url","referenceCount","citationCount","influentialCitationCount","isOpenAccess","openAccessPdf","fieldsOfStudy","s2FieldsOfStudy","embedding.specter_v1","embedding.specter_v2","publicationDate","citations"]


fieldsOfStudy = ["Computer Science","Medicine","Chemistry","Biology","Materials Science","Physics","Geology","Art","History","Geography","Sociology","Business","Political Science","Philosophy","Art","Literature","Music","Economics","Philosophy","Mathematics","Engineering","Environmental Science","Agricultural and Food Sciences","Education","Law","Linguistics"]

# citations.paperId, citations.title, citations.year, citations.authors.name, citations.authors.paperCount, citations.authors.citationCount, citations.authors.hIndex, citations.url, citations.referenceCount, citations.citationCount, citations.influentialCitationCount, citations.isOpenAccess, citations.openAccessPdf, citations.fieldsOfStudy, citations.s2FieldsOfStudy, citations.publicationDate

# publicationDateOrYear: 2019-03-05 ; 2019-03 ; 2019 ; 2016-03-05:2020-06-06 ; 1981-08-25: ; :2020-06-06 ; 1981:2020

# publicationTypes: Review ; JournalArticle CaseReport ; ClinicalTrial ; Dataset ; Editorial ; LettersAndComments ; MetaAnalysis ; News ; Study ; Book ; BookSection



def process_fields(fields):
   return ",".join(fields)


class SementicSearcher:
    def __init__(self, ban_paper = []) -> None:
        self.ban_paper = ban_paper
    
    def search_papers(self, query, limit=5, offset=0, fields=["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citations.title","citations.abstract","citations.isOpenAccess","citations.openAccessPdf","citations.citationCount","citationCount","citations.year"],
                            publicationDate=None, minCitationCount=0, year=None, 
                            publicationTypes=None, fieldsOfStudy=None):
        url = 'https://api.semanticscholar.org/graph/v1/paper/search'
        fields = process_fields(fields) if isinstance(fields, list) else fields
        
        # More specific query parameter
        query_params = {
            'query': query,
            "limit": limit,
            "offset": offset,
            'fields': fields,
            'publicationDateOrYear': publicationDate,
            'minCitationCount': minCitationCount,
            'year': year,
            'publicationTypes': publicationTypes,
            'fieldsOfStudy': fieldsOfStudy
        }
        # Load the API key from the configuration file 
        api_key = os.environ.get('SEMENTIC_SEARCH_API_KEY',None)
        headers = {'x-api-key': api_key} if api_key else None
        try:
            filtered_query_params = {key: value for key, value in query_params.items() if value is not None}
            response = requests.get(url, params=filtered_query_params, headers=headers)

            if response.status_code == 200:
                response_data = response.json()
                return response_data
            elif response.status_code == 429:
                time.sleep(1)  
                print(f"Request failed with status code {response.status_code}: begin to retry")
                return self.search_papers(query, limit, offset, fields, publicationDate, minCitationCount, year, publicationTypes, fieldsOfStudy)
            else:
                print(f"Request failed with status code {response.status_code}: {response.text}")
                return None
        except requests.RequestException as e:
            print(f"An error occurred: {e}")
            return None
                
    def cal_cosine_similarity(self, vec1, vec2):
        return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
    
    def cal_cosine_similarity_matric(self,matric1, matric2):
        if isinstance(matric1, list):
            matric1 = np.array(matric1)
        if isinstance(matric2, list):
            matric2 = np.array(matric2)
        if len(matric1.shape) == 1:
            matric1 = matric1.reshape(1, -1)
        if len(matric2.shape) == 1:
            matric2 = matric2.reshape(1, -1)
        dot_product = np.dot(matric1, matric2.T)
        norm1 = np.linalg.norm(matric1, axis=1)
        norm2 = np.linalg.norm(matric2, axis=1)

        cos_sim = dot_product / np.outer(norm1, norm2)
        scores = cos_sim.flatten()
        return scores.tolist()

    def read_arxiv_from_path(self, pdf_path):
        def is_pdf(binary_data):
            pdf_header = b'%PDF-'
            return binary_data.startswith(pdf_header)
        try:
            flag = is_pdf(pdf_path)
            if not flag:
                return None
        except Exception as e:
            pass
        try:
            article_dict = scipdf.parse_pdf_to_dict(pdf_path)
        except Exception as e:
            print(f"Failed to parse the PDF")
            return None
        return article_dict
        
    def get_paper_embbeding_and_score(self,query_embedding, paper,llm):
        paper_content = f"""
Title: {paper['title']}
Abstract: {paper['abstract']}
"""
        paper_embbeding = llm.get_embbeding(paper_content)
        paper_embbeding = np.array(paper_embbeding)
        score = self.cal_cosine_similarity(query_embedding,paper_embbeding)
        return [paper,score]

    
    def rerank_papers(self, query_embedding, paper_list,llm):
        if len(paper_list) == 0:
            return []
        paper_list = [paper for paper in paper_list if paper]
        paper_contents = []
        for paper in paper_list:
            paper_content = f"""
Title: {paper['title']}
Abstract: {paper['abstract']}
"""
            paper_contents.append(paper_content)
        paper_contents_embbeding = llm.get_embbeding(paper_contents)
        paper_contents_embbeding = np.array(paper_contents_embbeding)
        scores = self.cal_cosine_similarity_matric(query_embedding,paper_contents_embbeding)
            
        # 根据score对paper_list进行排序 
        paper_list = sorted(zip(paper_list,scores),key = lambda x: x[1],reverse = True)
        paper_list = [paper[0] for paper in paper_list]
        return paper_list
        
    
    def search(self,query,max_results = 5 ,paper_list = None ,rerank_query = None,llm = None,year = None,publicationDate = None,need_download = True,fields = ["title", "paperId", "abstract", "isOpenAccess", 'openAccessPdf', "year","publicationDate","citationCount"]):
        if rerank_query:
            rerank_query_embbeding = llm.get_embbeding(rerank_query)
            rerank_query_embbeding = np.array(rerank_query_embbeding)

        readed_papers = []
        if paper_list:
            if isinstance(paper_list,set):
                paper_list = list(paper_list)
            if len(paper_list) == 0 :
                pass
            elif isinstance(paper_list[0], str):
                readed_papers = paper_list
            elif isinstance(paper_list[0], Result):
                readed_papers = [paper.title for paper in paper_list]

        print(f"Searching for papers related to the query: <{query}>")
        results = self.search_papers(query,limit = 10 * max_results,year=year,publicationDate = publicationDate,fields = fields)
        if not results or "data" not in results:
            return []
        
        new_results = []
        for result in results['data']:
            if result['title'] in self.ban_paper:
                continue
            new_results.append(result)
        results = new_results

        final_results = []
        if need_download:
            paper_candidates = []
            for result in results:
                if not result['isOpenAccess'] or  not result['openAccessPdf'] or result['title'] in readed_papers:
                    continue
                else:
                    paper_candidates.append(result)
        else:
            paper_candidates = results
        
        if llm and rerank_query:
            paper_candidates = self.rerank_papers(rerank_query_embbeding, paper_candidates,llm)
        
        if need_download:
            for result in paper_candidates:
                pdf_link = result['openAccessPdf']["url"]
                try:
                    content = self.download_pdf(pdf_link)
                    if not content:
                        continue
                except Exception as e:
                    continue
                title = result['title']
                abstract = result['abstract']
                citationCount = result['citationCount']
                year = result['year']
                article = self.read_arxiv_from_path(content)
                if not article:
                    continue
                final_results.append(Result(title,abstract,article,citationCount,year))
                if len(final_results) >= max_results:
                    break
        else:
            for result in paper_candidates:
                title = result['title']
                abstract = result['abstract']
                citationCount = result['citationCount']
                year = result['year']
                final_results.append(Result(title,abstract,None,citationCount,year))
                if len(final_results) >= max_results:
                    break
        return final_results
    
    def search_related_paper(self,title,need_citation = True,need_reference = True,rerank_query = None,llm = None,paper_list = []):
        print(f"Searching for the related papers of <{title}>, need_citation: {need_citation}, need_reference: {need_reference}")
        fileds = ["title","abstract","citations.title","citations.abstract","citations.citationCount","references.title","references.abstract","references.citationCount","citations.isOpenAccess","citations.openAccessPdf","references.isOpenAccess","references.openAccessPdf","citations.year","references.year"]
        results = self.search_papers(title,limit = 3,fields=fileds)
        related_papers = []
        related_papers_title = []
        if not results or "data" not in results:
            return None
        for result in results["data"]:
            if not result:
                continue
            if need_citation:
                for citation in result["citations"]:
                    if "openAccessPdf" not in citation or not citation["openAccessPdf"]:
                        continue
                    elif citation["title"] in related_papers_title or citation["title"] in self.ban_paper or citation["title"] in paper_list:
                        continue
                    elif citation["isOpenAccess"] == False or citation["openAccessPdf"] == None:
                        continue
                    else:
                        related_papers.append(citation)
                        related_papers_title.append(citation["title"])
            if need_reference:
                for reference in result["references"]:
                    if "openAccessPdf" not in reference or not reference["openAccessPdf"]:
                        continue
                    elif reference["title"] in related_papers_title or reference["title"] in self.ban_paper or reference["title"] in paper_list:
                        continue
                    elif reference["isOpenAccess"] == False or reference["openAccessPdf"] == None:
                        continue
                    else:
                        related_papers.append(reference)
                        related_papers_title.append(reference["title"])
            if result:
                break
        if len(related_papers) >= 200:
            related_papers = related_papers[:200]

        if rerank_query and llm:
            rerank_query_embbeding = llm.get_embbeding(rerank_query)
            rerank_query_embbeding = np.array(rerank_query_embbeding)
            related_papers = self.rerank_papers(rerank_query_embbeding, related_papers,llm)
            related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers]
        else:
            related_papers = [[paper["title"],paper["abstract"],paper["openAccessPdf"]["url"],paper["citationCount"],paper['year']] for paper in related_papers]
            related_papers = sorted(related_papers,key = lambda x: x[3],reverse = True)
        print(f"Found {len(related_papers)} related papers")
        for paper in related_papers:
            url = paper[2]
            content = self.download_pdf(url)
            if content:
                article = self.read_arxiv_from_path(content)
                if not article:
                    continue
                result = Result(paper[0],paper[1],article,paper[3],paper[4])
                return result
        return None
    
    
    def download_pdf(self, pdf_link):
        content = download(pdf_link)
        return content

    def read_paper_title_abstract(self,article):
        title = article["title"]
        abstract = article["abstract"]
        paper_content = f"""
Title: {title}
Abstract: {abstract}
        """
        return paper_content

    def read_paper_content(self,article):
        paper_content = self.read_paper_title_abstract(article)
        for section in article["sections"]:
            paper_content += f"section: {section['heading']}\n content: {section['text']}\n ref_ids: {section['publication_ref']}\n"
        return paper_content
    
    def read_paper_content_with_ref(self,article):
        paper_content = self.read_paper_content(article)
        paper_content += "<References>\n"
        i = 1
        for refer in article["references"]:
            ref_id = refer["ref_id"]
            title = refer["title"]
            year = refer["year"]
            paper_content += f"Ref_id:{ref_id} Title: {title} Year: ({year})\n"
            i += 1
        paper_content += "</References>\n"
        return paper_content