Spaces:
Runtime error
Runtime error
File size: 10,855 Bytes
2918e4b 2b622fc 2918e4b 2b622fc 2918e4b 0553f99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import sys
import gradio as gr
import requests
import io
import base64
import json
import tempfile
import os
import numpy as np
import random
from PIL import Image as PILImage, ImageDraw, ImageFont
from moviepy.editor import *
import textwrap
from pydub import AudioSegment
import datetime
import cairosvg
import anthropic
import concurrent.futures
# Initialize Anthropic client
client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
# ElevenLabs API key
elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
def get_convo_list(description):
prompt =f"Your task is to return a JSON object representing a complete conversation containing a key 'turns' with a value which is just a list of objects containing 'turn_number', an integer, and 'message', the message for that turn. Ensure you return as many turns as the user specifies, if they specify. Remember, each turn is a turn in a conversation between a phone agent (female) and a human (male). The phone agent should speak first. The conversation is described as:\n{description}.\nCritically, ensure that the human turns employ filler words (uh, uhhhh, ummmm, yeahhh, hm, hmm, etc with repeated letters to denote thinking...) and realistic language without using *sounds effects*. I repeat, do NOT use *sound effects*. Additionally, do not over-use filler words or start every human response with them. The goal is to sound realistic, not exagerrated. The AI should be conversational, employing transition phrases. The AI should always end their response with a question except when saying goodbye. Additionally, digits spaced out. For instance, the human might say: 'My phone number is 5 4 8... 9 2 2 3...' instead of writing it out. They might also say 'My email is steve at gmail dot com.' where it is written out. Now provide the JSON."
new_output = ""
total_tokens = 350
with client.messages.stream(
max_tokens=8000,
messages=[
{"role": "user", "content": prompt}
],
model="claude-3-5-sonnet-20241022",
temperature=0.1,
) as stream:
for text in stream.text_stream:
new_output += text
first_brace = new_output.find('{')
last_brace = new_output.rfind('}')
new_output = new_output[first_brace:last_brace+1]
new_output = json.loads(new_output)
output_list = []
for i in new_output["turns"]:
output_list.append(i['message'])
return output_list
def download_and_convert_svg_to_png(svg_url):
response = requests.get(svg_url)
if response.status_code == 200:
svg_data = response.content
png_data = cairosvg.svg2png(bytestring=svg_data)
image = PILImage.open(io.BytesIO(png_data))
return image
else:
print(f"Failed to download SVG image from {svg_url}")
return None
def generate_speech(text, voice_id, stability=0.8, style=0):
model_id = "eleven_multilingual_v2"
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}"
payload = {
"text": text,
"model_id": model_id,
"voice_settings": {
"stability": stability,
"similarity_boost": 0.5,
"use_speaker_boost": True,
"style": 0,
}
}
headers = {
"xi-api-key": elevenlabs_api_key,
"Accept": "audio/mpeg"
}
response = requests.request("POST", url, json=payload, headers=headers)
if response.status_code == 200:
return response.content
else:
print(f"Error generating speech: {response.status_code} - {response.text}")
return None
def create_text_image(text, logo_image, text_color, image_size=(1920, 1080), bg_color="#0e2e28", font_size=70, logo_scale=0.05):
bg_color_rgb = PILImage.new("RGB", (1, 1), color=bg_color).getpixel((0, 0))
text_color_rgb = PILImage.new("RGB", (1, 1), color=text_color).getpixel((0, 0))
img = PILImage.new('RGB', image_size, color=bg_color_rgb)
draw = ImageDraw.Draw(img)
logo_aspect_ratio = logo_image.width / logo_image.height
logo_height = int(image_size[1] * logo_scale)
logo_width = int(logo_height * logo_aspect_ratio)
logo_image = logo_image.resize((logo_width, logo_height))
logo_position = (int(image_size[0] * 0.05), int(image_size[1] / 2 - logo_height / 2))
img.paste(logo_image, logo_position, logo_image.convert('RGBA'))
text_area_x = logo_position[0] + logo_width + int(image_size[0] * 0.05)
text_area_width = image_size[0] - text_area_x - int(image_size[0] * 0.05)
try:
import cv2
font_path = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
font = ImageFont.load_default()
max_chars_per_line = int(text_area_width / (font_size * 0.6))
wrapped_text = textwrap.fill(text, width=max_chars_per_line)
draw_img = PILImage.new('RGB', (text_area_width, image_size[1]))
draw_draw = ImageDraw.Draw(draw_img)
try:
bbox = draw_draw.multiline_textbbox((0, 0), wrapped_text, font=font, align='left')
except AttributeError:
bbox = draw_draw.textbox((0, 0), wrapped_text, font=font, align='left')
text_height = bbox[3] - bbox[1]
text_position = (text_area_x, int((image_size[1] - text_height) / 2))
draw.multiline_text(text_position, wrapped_text, fill=text_color_rgb, font=font, align='left')
return img
def trim_silence_from_end(audio_segment, silence_threshold=-50.0, chunk_size=10):
duration_ms = len(audio_segment)
trim_ms = 0
while trim_ms < duration_ms:
start_index = duration_ms - trim_ms - chunk_size
if start_index < 0:
start_index = 0
chunk = audio_segment[start_index:duration_ms - trim_ms]
if chunk.dBFS > silence_threshold:
break
trim_ms += chunk_size
if trim_ms > 0:
return audio_segment[:duration_ms - trim_ms]
else:
return audio_segment
def add_silence_to_audio(audio_content, silence_duration=0):
silence = AudioSegment.silent(duration=silence_duration)
original_audio = AudioSegment.from_file(io.BytesIO(audio_content), format="mp3")
original_audio = trim_silence_from_end(original_audio)
new_audio = silence + original_audio
audio_io = io.BytesIO()
new_audio.export(audio_io, format="wav", parameters=["-ar", "44100"])
audio_io.seek(0)
return audio_io.read()
def create_video_clip(image, duration, target_resolution=(1920, 1080)):
image = image.convert('RGB')
img_array = np.array(image)
clip = ImageClip(img_array)
clip = clip.resize(newsize=target_resolution)
return clip.set_duration(duration)
def process_message(args):
i, message, logo_image, voice_ids = args
voice_id = voice_ids[i % len(voice_ids)]
if i % len(voice_ids) == 0:
text_color = "#cdfa8a"
stability = 0.8
style = 0
else:
text_color = "#FFFFFF"
stability = 0.27
style = 0.3
try:
audio_content = generate_speech(message, voice_id, stability=stability, style=style)
if audio_content is None:
return (None, None, None)
audio_data = add_silence_to_audio(audio_content, silence_duration=0)
temp_audio_file = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
temp_audio_file.write(audio_data)
temp_audio_file.close()
temp_audio_path = temp_audio_file.name
audio_clip = AudioFileClip(temp_audio_path)
audio_duration = audio_clip.duration
image = create_text_image(message, logo_image, text_color, font_size=30, logo_scale=0.07)
video_clip = create_video_clip(image, duration=audio_duration)
audio_clip = audio_clip.set_duration(video_clip.duration)
audio_clip = audio_clip.audio_fadeout(0.2)
video_clip = video_clip.set_audio(audio_clip)
return (video_clip, audio_clip, temp_audio_path)
except Exception as e:
print(f"Error processing message {i+1}: {e}")
return (None, None, None)
def generate_conversation_video(messages, voice_ids, logo_url):
logo_image = download_and_convert_svg_to_png(logo_url)
if logo_image is None:
return None
video_clips = []
audio_clips = []
temp_audio_paths = []
args = [(i, message, logo_image, voice_ids) for i, message in enumerate(messages)]
max_workers = 5
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(executor.map(process_message, args))
for i, (video_clip, audio_clip, temp_audio_path) in enumerate(results):
if video_clip and audio_clip:
if i > 0:
gap_duration = random.uniform(0.6, 1.3)
silence = AudioClip(lambda t: 0, duration=gap_duration)
previous_frame = video_clips[-1].get_frame(-1)
gap_clip = ImageClip(previous_frame).set_duration(gap_duration)
video_clips.append(gap_clip)
audio_clips.append(silence)
video_clips.append(video_clip)
audio_clips.append(audio_clip)
temp_audio_paths.append(temp_audio_path)
else:
if temp_audio_path:
os.unlink(temp_audio_path)
if not video_clips or not audio_clips:
return None
final_audio = concatenate_audioclips(audio_clips)
video_clips_no_audio = [clip.without_audio() for clip in video_clips]
final_video = concatenate_videoclips(video_clips_no_audio, method="chain")
final_video = final_video.set_audio(final_audio)
temp_video_path = tempfile.mktemp(suffix='.mp4')
final_video.write_videofile(
temp_video_path,
fps=2,
codec="libx264",
audio_codec="aac",
audio_bitrate="192k",
temp_audiofile='temp-audio.m4a',
remove_temp=True,
verbose=False,
logger=None
)
# Cleanup
for clip in audio_clips:
clip.close()
for path in temp_audio_paths:
if os.path.exists(path):
os.unlink(path)
return temp_video_path
def generate_video(description):
voice_ids = [
"cgSgspJ2msm6clMCkdW9", # First speaker
"roraOcl4kU2pC4JUa2Cz" # Second speaker
]
logo_url = "https://opencall.ai/images/logo-symbol.svg"
messages = get_convo_list(description)
video_path = generate_conversation_video(messages, voice_ids, logo_url)
return video_path
# Create Gradio interface
iface = gr.Interface(
fn=generate_video,
inputs=gr.Textbox(label="Enter conversation description"),
outputs=gr.Video(label="Generated Video"),
title="AI Conversation Video Generator",
description="Generate a video conversation between two speakers based on your description."
)
iface.launch() |