Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,21 @@
|
|
| 1 |
-
import
|
| 2 |
import sqlite3
|
| 3 |
import numpy as np
|
| 4 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
-
import
|
| 6 |
import os
|
|
|
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
cursor = conn.cursor()
|
| 16 |
-
|
| 17 |
-
# Fetch the rows from the database
|
| 18 |
-
cursor.execute("SELECT text, embedding FROM chunks")
|
| 19 |
-
rows = cursor.fetchall()
|
| 20 |
-
|
| 21 |
-
# Create a dictionary to store the text and embedding for each row
|
| 22 |
-
dictionary_of_vectors = {}
|
| 23 |
-
for row in rows:
|
| 24 |
-
text = row[0]
|
| 25 |
-
embedding_str = row[1]
|
| 26 |
-
embedding = np.fromstring(embedding_str, sep=' ')
|
| 27 |
-
dictionary_of_vectors[text] = embedding
|
| 28 |
-
|
| 29 |
-
# Close the connection
|
| 30 |
-
conn.close()
|
| 31 |
|
| 32 |
-
def find_closest_neighbors(vector):
|
| 33 |
cosine_similarities = {}
|
| 34 |
for key, value in dictionary_of_vectors.items():
|
| 35 |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
|
@@ -37,33 +23,47 @@ def find_closest_neighbors(vector):
|
|
| 37 |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
| 38 |
return sorted_cosine_similarities[0:4]
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
return embedding
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
|
|
|
| 52 |
context = ''
|
| 53 |
for match in match_list:
|
| 54 |
context += str(match[0])
|
| 55 |
-
|
| 56 |
-
context = context[:1500] # Limit context to the last 1500 characters
|
| 57 |
|
| 58 |
-
prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
iface = gr.Interface(fn=context_gpt_response, inputs="text", outputs="text", title="Aquarium Grant Application Chatbot", description="Context-specific chatbot for grant writing", examples=[["What types of projects are eligible for funding?"], ["Tell me more about the application process."], ["What will be the most impactful grant opportunities?"]])
|
| 69 |
-
iface.launch()
|
|
|
|
| 1 |
+
import sklearn
|
| 2 |
import sqlite3
|
| 3 |
import numpy as np
|
| 4 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
import openai
|
| 6 |
import os
|
| 7 |
+
import gradio as gr
|
| 8 |
|
| 9 |
+
# Set OpenAI API key from environment variable
|
| 10 |
+
openai.api_key = os.environ["Secret"]
|
| 11 |
|
| 12 |
+
def find_closest_neighbors(vector1, dictionary_of_vectors):
|
| 13 |
+
vector = openai.Embedding.create(
|
| 14 |
+
input=vector1,
|
| 15 |
+
engine="text-embedding-ada-002"
|
| 16 |
+
)['data'][0]['embedding']
|
| 17 |
+
vector = np.array(vector)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
cosine_similarities = {}
|
| 20 |
for key, value in dictionary_of_vectors.items():
|
| 21 |
cosine_similarities[key] = cosine_similarity(vector.reshape(1, -1), value.reshape(1, -1))[0][0]
|
|
|
|
| 23 |
sorted_cosine_similarities = sorted(cosine_similarities.items(), key=lambda x: x[1], reverse=True)
|
| 24 |
return sorted_cosine_similarities[0:4]
|
| 25 |
|
| 26 |
+
def predict(message, history):
|
| 27 |
+
# Connect to the database
|
| 28 |
+
conn = sqlite3.connect('text_chunks_with_embeddings.db') # Update the database name
|
| 29 |
+
cursor = conn.cursor()
|
| 30 |
+
cursor.execute("SELECT text, embedding FROM chunks")
|
| 31 |
+
rows = cursor.fetchall()
|
|
|
|
| 32 |
|
| 33 |
+
dictionary_of_vectors = {}
|
| 34 |
+
for row in rows:
|
| 35 |
+
text = row[0]
|
| 36 |
+
embedding_str = row[1]
|
| 37 |
+
embedding = np.fromstring(embedding_str, sep=' ')
|
| 38 |
+
dictionary_of_vectors[text] = embedding
|
| 39 |
+
conn.close()
|
| 40 |
|
| 41 |
+
match_list = find_closest_neighbors(message, dictionary_of_vectors)
|
| 42 |
context = ''
|
| 43 |
for match in match_list:
|
| 44 |
context += str(match[0])
|
| 45 |
+
context = context[:1500] # Limit context to 1500 characters
|
|
|
|
| 46 |
|
| 47 |
+
prep = f"This is an OpenAI model designed to answer questions specific to grant-making applications for an aquarium. Here is some question-specific context: {context}. Q: {message} A: "
|
| 48 |
+
|
| 49 |
+
history_openai_format = []
|
| 50 |
+
for human, assistant in history:
|
| 51 |
+
history_openai_format.append({"role": "user", "content": human})
|
| 52 |
+
history_openai_format.append({"role": "assistant", "content": assistant})
|
| 53 |
+
history_openai_format.append({"role": "user", "content": prep})
|
| 54 |
+
|
| 55 |
+
response = openai.ChatCompletion.create(
|
| 56 |
+
model='gpt-4',
|
| 57 |
+
messages=history_openai_format,
|
| 58 |
+
temperature=1.0,
|
| 59 |
+
stream=True
|
| 60 |
)
|
| 61 |
|
| 62 |
+
partial_message = ""
|
| 63 |
+
for chunk in response:
|
| 64 |
+
if len(chunk['choices'][0]['delta']) != 0:
|
| 65 |
+
partial_message += chunk['choices'][0]['delta']['content']
|
| 66 |
+
yield partial_message
|
| 67 |
+
|
| 68 |
+
gr.ChatInterface(predict).queue().launch()
|
| 69 |
|
|
|
|
|
|