qqwjq1981 commited on
Commit
22e41e6
·
verified ·
1 Parent(s): 63e83a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1158
app.py CHANGED
@@ -1,1162 +1,7 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
-
5
- # In[2]:
6
-
7
-
8
- #pip install evernote-sdk-python3
9
- # import evernote.edam.notestore.NoteStore as NoteStore
10
- # import evernote.edam.type.ttypes as Types
11
- # from evernote.api.client import EvernoteClient
12
-
13
-
14
- # In[3]:
15
-
16
-
17
- import os
18
- import yaml
19
- import pandas as pd
20
- import numpy as np
21
-
22
- from datetime import datetime, timedelta
23
-
24
- # perspective generation
25
- import openai
26
- import os
27
- from openai import OpenAI
28
-
29
- import gradio as gr
30
-
31
- import json
32
-
33
- import sqlite3
34
- import uuid
35
- import socket
36
- import difflib
37
- import time
38
- import shutil
39
- import requests
40
- import re
41
-
42
- import json
43
- import markdown
44
- from fpdf import FPDF
45
- import hashlib
46
-
47
- from transformers import pipeline
48
- from transformers.pipelines.audio_utils import ffmpeg_read
49
-
50
- from todoist_api_python.api import TodoistAPI
51
-
52
- # from flask import Flask, request, jsonify
53
- from twilio.rest import Client
54
-
55
- import asyncio
56
- import uvicorn
57
- from fastapi import FastAPI, Request, HTTPException
58
- from fastapi.responses import HTMLResponse, JSONResponse, RedirectResponse
59
-
60
- import nest_asyncio
61
- from twilio.twiml.messaging_response import MessagingResponse
62
-
63
- from requests.auth import HTTPBasicAuth
64
-
65
- from google.cloud import storage, exceptions # Import exceptions for error handling
66
- from google.cloud.exceptions import NotFound
67
- from google.oauth2 import service_account
68
-
69
- from reportlab.pdfgen import canvas
70
- from reportlab.lib.pagesizes import letter
71
- from reportlab.pdfbase import pdfmetrics
72
- from reportlab.lib import colors
73
- from reportlab.pdfbase.ttfonts import TTFont
74
-
75
- import logging
76
-
77
- # Configure logging
78
- logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
79
- logger = logging.getLogger(__name__)
80
-
81
-
82
- # In[4]:
83
-
84
- # Access the API keys and other configuration data
85
- openai_api_key = os.environ["OPENAI_API_KEY"]
86
- # Access the API keys and other configuration data
87
- todoist_api_key = os.environ["TODOIST_API_KEY"]
88
-
89
- EVERNOTE_API_TOKEN = os.environ["EVERNOTE_API_TOKEN"]
90
-
91
- account_sid = os.environ["TWILLO_ACCOUNT_SID"]
92
- auth_token = os.environ["TWILLO_AUTH_TOKEN"]
93
- twilio_phone_number = os.environ["TWILLO_PHONE_NUMBER"]
94
-
95
- google_credentials_json = os.environ["GOOGLE_APPLICATION_CREDENTIALS"]
96
- twillo_client = Client(account_sid, auth_token)
97
-
98
- # Set the GOOGLE_APPLICATION_CREDENTIALS environment variable
99
-
100
- # Load Reasoning Graph JSON File
101
- def load_reasoning_json(filepath):
102
- """Load JSON file and return the dictionary."""
103
- with open(filepath, "r") as file:
104
- data = json.load(file)
105
- return data
106
-
107
- # Load Action Map
108
- def load_action_map(filepath):
109
- """Load action map JSON file and map strings to actual function objects."""
110
- with open(filepath, "r") as file:
111
- action_map_raw = json.load(file)
112
- # Map string names to actual functions using globals()
113
- return {action: globals()[func_name] for action, func_name in action_map_raw.items()}
114
-
115
-
116
- # In[5]:
117
-
118
-
119
- # Define all actions as functions
120
-
121
- def find_reference(task_topic):
122
- """Finds a reference related to the task topic."""
123
- print(f"Finding reference for topic: {task_topic}")
124
- return f"Reference found for topic: {task_topic}"
125
-
126
- def generate_summary(reference):
127
- """Generates a summary of the reference."""
128
- print(f"Generating summary for reference: {reference}")
129
- return f"Summary of {reference}"
130
-
131
- def suggest_relevance(summary):
132
- """Suggests how the summary relates to the project."""
133
- print(f"Suggesting relevance of summary: {summary}")
134
- return f"Relevance of {summary} suggested"
135
-
136
- def tool_research(task_topic):
137
- """Performs tool research and returns analysis."""
138
- print("Performing tool research")
139
- return "Tool analysis data"
140
-
141
- def generate_comparison_table(tool_analysis):
142
- """Generates a comparison table for a competitive tool."""
143
- print(f"Generating comparison table for analysis: {tool_analysis}")
144
- return f"Comparison table for {tool_analysis}"
145
-
146
- def generate_integration_memo(tool_analysis):
147
- """Generates an integration memo for a tool."""
148
- print(f"Generating integration memo for analysis: {tool_analysis}")
149
- return f"Integration memo for {tool_analysis}"
150
-
151
- def analyze_issue(task_topic):
152
- """Analyzes an issue and returns the analysis."""
153
- print("Analyzing issue")
154
- return "Issue analysis data"
155
-
156
- def generate_issue_memo(issue_analysis):
157
- """Generates an issue memo based on the analysis."""
158
- print(f"Generating issue memo for analysis: {issue_analysis}")
159
- return f"Issue memo for {issue_analysis}"
160
-
161
- def list_ideas(task_topic):
162
- """Lists potential ideas for brainstorming."""
163
- print("Listing ideas")
164
- return ["Idea 1", "Idea 2", "Idea 3"]
165
-
166
- def construct_matrix(ideas):
167
- """Constructs a matrix (e.g., feasibility or impact/effort) for the ideas."""
168
- print(f"Constructing matrix for ideas: {ideas}")
169
- return {"Idea 1": "High Impact/Low Effort", "Idea 2": "Low Impact/High Effort", "Idea 3": "High Impact/High Effort"}
170
-
171
- def prioritize_ideas(matrix):
172
- """Prioritizes ideas based on the matrix."""
173
- print(f"Prioritizing ideas based on matrix: {matrix}")
174
- return ["Idea 3", "Idea 1", "Idea 2"]
175
-
176
- def setup_action_plan(prioritized_ideas):
177
- """Sets up an action plan based on the prioritized ideas."""
178
- print(f"Setting up action plan for ideas: {prioritized_ideas}")
179
- return f"Action plan created for {prioritized_ideas}"
180
-
181
- def unsupported_task(task_topic):
182
- """Handles unsupported tasks."""
183
- print("Task not supported")
184
- return "Unsupported task"
185
-
186
-
187
- # In[6]:
188
-
189
-
190
- todoist_api = TodoistAPI(todoist_api_key)
191
-
192
- # Fetch recent Todoist task
193
- def fetch_todoist_task():
194
- try:
195
- tasks = todoist_api.get_tasks()
196
- if tasks:
197
- recent_task = tasks[0] # Fetch the most recent task
198
- return f"Recent Task: {recent_task.content}"
199
- return "No tasks found in Todoist."
200
- except Exception as e:
201
- return f"Error fetching tasks: {str(e)}"
202
-
203
- def add_to_todoist(task_topic, todoist_priority = 3):
204
- try:
205
- # Create a task in Todoist using the Todoist API
206
- # Assuming you have a function `todoist_api.add_task()` that handles the API request
207
- todoist_api.add_task(
208
- content=task_topic,
209
- priority=todoist_priority
210
- )
211
- msg = f"Task added: {task_topic} with priority {todoist_priority}"
212
- logger.debug(msg)
213
-
214
- return msg
215
- except Exception as e:
216
- # Return an error message if something goes wrong
217
- return f"An error occurred: {e}"
218
-
219
- # def save_todo(reasoning_steps):
220
- # """
221
- # Save reasoning steps to Todoist as tasks.
222
-
223
- # Args:
224
- # reasoning_steps (list of dict): A list of steps with "step" and "priority" keys.
225
- # """
226
- # try:
227
- # # Validate that reasoning_steps is a list
228
- # if not isinstance(reasoning_steps, list):
229
- # raise ValueError("The input reasoning_steps must be a list.")
230
-
231
- # # Iterate over the reasoning steps
232
- # for step in reasoning_steps:
233
- # # Ensure each step is a dictionary and contains required keys
234
- # if not isinstance(step, dict) or "step" not in step or "priority" not in step:
235
- # logger.error(f"Invalid step data: {step}, skipping.")
236
- # continue
237
-
238
- # task_content = step["step"]
239
- # priority_level = step["priority"]
240
-
241
- # # Map priority to Todoist's priority levels (1 - low, 4 - high)
242
- # priority_mapping = {"Low": 1, "Medium": 2, "High": 4}
243
- # todoist_priority = priority_mapping.get(priority_level, 1) # Default to low if not found
244
-
245
- # # Create a task in Todoist using the Todoist API
246
- # # Assuming you have a function `todoist_api.add_task()` that handles the API request
247
- # todoist_api.add_task(
248
- # content=task_content,
249
- # priority=todoist_priority
250
- # )
251
-
252
- # logger.debug(f"Task added: {task_content} with priority {priority_level}")
253
-
254
- # return "All tasks processed."
255
- # except Exception as e:
256
- # # Return an error message if something goes wrong
257
- # return f"An error occurred: {e}"
258
-
259
-
260
- # In[7]:
261
-
262
-
263
- # evernote_client = EvernoteClient(token=EVERNOTE_API_TOKEN, sandbox=False)
264
- # note_store = evernote_client.get_note_store()
265
-
266
- # def add_to_evernote(task_topic, notebook_title="Inspirations"):
267
- # """
268
- # Add a task topic to the 'Inspirations' notebook in Evernote. If the notebook doesn't exist, create it.
269
-
270
- # Args:
271
- # task_topic (str): The content of the task to be added.
272
- # notebook_title (str): The title of the Evernote notebook. Default is 'Inspirations'.
273
- # """
274
- # try:
275
- # # Check if the notebook exists
276
- # notebooks = note_store.listNotebooks()
277
- # notebook = next((nb for nb in notebooks if nb.name == notebook_title), None)
278
-
279
- # # If the notebook doesn't exist, create it
280
- # if not notebook:
281
- # notebook = Types.Notebook()
282
- # notebook.name = notebook_title
283
- # notebook = note_store.createNotebook(notebook)
284
-
285
- # # Search for an existing note with the same title
286
- # filter = NoteStore.NoteFilter()
287
- # filter.notebookGuid = notebook.guid
288
- # filter.words = notebook_title
289
- # notes_metadata_result = note_store.findNotesMetadata(filter, 0, 1, NoteStore.NotesMetadataResultSpec(includeTitle=True))
290
-
291
- # # If a note with the title exists, append to it; otherwise, create a new note
292
- # if notes_metadata_result.notes:
293
- # note_guid = notes_metadata_result.notes[0].guid
294
- # existing_note = note_store.getNote(note_guid, True, False, False, False)
295
- # existing_note.content = existing_note.content.replace("</en-note>", f"<div>{task_topic}</div></en-note>")
296
- # note_store.updateNote(existing_note)
297
- # else:
298
- # # Create a new note
299
- # note = Types.Note()
300
- # note.title = notebook_title
301
- # note.notebookGuid = notebook.guid
302
- # note.content = f'<?xml version="1.0" encoding="UTF-8"?>' \
303
- # f'<!DOCTYPE en-note SYSTEM "http://xml.evernote.com/pub/enml2.dtd">' \
304
- # f'<en-note><div>{task_topic}</div></en-note>'
305
- # note_store.createNote(note)
306
-
307
- # print(f"Task '{task_topic}' successfully added to Evernote under '{notebook_title}'.")
308
- # except Exception as e:
309
- # print(f"Error adding task to Evernote: {e}")
310
-
311
- # Mock Functions for Task Actions
312
- def add_to_evernote(task_topic):
313
- return f"Task added to Evernote with title '{task_topic}'."
314
-
315
-
316
- # In[8]:
317
-
318
-
319
- # Access the API keys and other configuration data
320
- TASK_WORKFLOW_TREE = load_reasoning_json('curify_ideas_reasoning.json')
321
- action_map = load_action_map('action_map.json')
322
-
323
- # In[9]:
324
-
325
-
326
- def generate_task_hash(task_description):
327
- try:
328
- # Ensure task_description is a string
329
- if not isinstance(task_description, str):
330
- logger.warning("task_description is not a string, attempting conversion.")
331
- task_description = str(task_description)
332
-
333
- # Safely encode with UTF-8 and ignore errors
334
- encoded_description = task_description.encode("utf-8", errors="ignore")
335
- task_hash = hashlib.md5(encoded_description).hexdigest()
336
-
337
- logger.debug(f"Generated task hash: {task_hash}")
338
- return task_hash
339
- except Exception as e:
340
- # Log any unexpected issues
341
- logger.error(f"Error generating task hash: {e}", exc_info=True)
342
- return 'output'
343
-
344
- def save_to_google_storage(bucket_name, file_path, destination_blob_name, expiration_minutes = 1440):
345
- credentials_dict = json.loads(google_credentials_json)
346
-
347
- # Step 3: Use `service_account.Credentials.from_service_account_info` to authenticate directly with the JSON
348
- credentials = service_account.Credentials.from_service_account_info(credentials_dict)
349
- gcs_client = storage.Client(credentials=credentials, project=credentials.project_id)
350
-
351
- # Check if the bucket exists; if not, create it
352
- try:
353
- bucket = gcs_client.get_bucket(bucket_name)
354
- except NotFound:
355
- print(f"❌ Bucket '{bucket_name}' not found. Please check the bucket name.")
356
- bucket = gcs_client.create_bucket(bucket_name)
357
- print(f"✅ Bucket '{bucket_name}' created.")
358
- except Exception as e:
359
- print(f"❌ An unexpected error occurred: {e}")
360
- raise
361
- # Get a reference to the blob
362
- blob = bucket.blob(destination_blob_name)
363
-
364
- # Upload the file
365
- blob.upload_from_filename(file_path)
366
-
367
- # Generate a signed URL for the file
368
- signed_url = blob.generate_signed_url(
369
- version="v4",
370
- expiration=timedelta(minutes=expiration_minutes),
371
- method="GET"
372
- )
373
- print(f"✅ File uploaded to Google Cloud Storage. Signed URL: {signed_url}")
374
- return signed_url
375
-
376
-
377
- # Function to check if content is Simplified Chinese
378
- def is_simplified(text):
379
- simplified_range = re.compile('[\u4e00-\u9fff]') # Han characters in general
380
- simplified_characters = [char for char in text if simplified_range.match(char)]
381
- return len(simplified_characters) > len(text) * 0.5 # Threshold of 50% to be considered simplified
382
-
383
- # Function to choose the appropriate font for the content
384
- def choose_font_for_content(content):
385
- return 'NotoSansSC' if is_simplified(content) else 'NotoSansTC'
386
-
387
- # Function to generate and save a document using ReportLab
388
- def generate_document(task_description, md_content, user_name='jayw', bucket_name='curify'):
389
- logger.debug("Starting to generate document")
390
-
391
- # Hash the task description to generate a unique filename
392
- task_hash = generate_task_hash(task_description)
393
-
394
- # Truncate the hash if needed (64 characters is sufficient for uniqueness)
395
- max_hash_length = 64 # Adjust if needed
396
- truncated_hash = task_hash[:max_hash_length]
397
-
398
- # Generate PDF file locally
399
- local_filename = f"{truncated_hash}.pdf" # Use the truncated hash as the local file name
400
- c = canvas.Canvas(local_filename, pagesize=letter)
401
-
402
- # Paths to the TTF fonts for Simplified and Traditional Chinese
403
- sc_font_path = 'NotoSansSC-Regular.ttf' # Path to Simplified Chinese font
404
- tc_font_path = 'NotoSansTC-Regular.ttf' # Path to Traditional Chinese font
405
-
406
- try:
407
- # Register the Simplified Chinese font
408
- sc_font = TTFont('NotoSansSC', sc_font_path)
409
- pdfmetrics.registerFont(sc_font)
410
-
411
- # Register the Traditional Chinese font
412
- tc_font = TTFont('NotoSansTC', tc_font_path)
413
- pdfmetrics.registerFont(tc_font)
414
-
415
- # Set default font (Simplified Chinese or Traditional Chinese depending on content)
416
- c.setFont('NotoSansSC', 12)
417
- except Exception as e:
418
- logger.error(f"Error loading font files: {e}")
419
- raise RuntimeError("Failed to load one or more fonts. Ensure the font files are accessible.")
420
-
421
- # Set initial Y position for drawing text
422
- y_position = 750 # Starting position for text
423
-
424
- # Process dictionary and render content
425
- for key, value in md_content.items():
426
- # Choose the font based on the key (header)
427
- c.setFont(choose_font_for_content(key), 14)
428
- c.drawString(100, y_position, f"# {key}")
429
- y_position -= 20
430
-
431
- # Choose the font for the value
432
- c.setFont(choose_font_for_content(str(value)), 12)
433
-
434
- # Add value
435
- if isinstance(value, list): # Handle lists
436
- for item in value:
437
- c.drawString(100, y_position, f"- {item}")
438
- y_position -= 15
439
- else: # Handle single strings
440
- c.drawString(100, y_position, value)
441
- y_position -= 15
442
-
443
- # Check if the page needs to be broken (if Y position is too low)
444
- if y_position < 100:
445
- c.showPage() # Create a new page
446
- c.setFont('NotoSansSC', 12) # Reset font
447
- y_position = 750 # Reset the Y position for the new page
448
-
449
- # Save the PDF
450
- c.save()
451
-
452
- # Organize files into user-specific folders
453
- destination_blob_name = f"{user_name}/{truncated_hash}.pdf"
454
-
455
- # Upload to Google Cloud Storage and get the public URL
456
- public_url = save_to_google_storage(bucket_name, local_filename, destination_blob_name)
457
- logger.debug("Finished generating document")
458
- return public_url
459
-
460
- # In[10]:
461
-
462
-
463
- def execute_with_retry(sql, params=(), attempts=5, delay=1, db_name = 'curify_ideas.db'):
464
- for attempt in range(attempts):
465
- try:
466
- with sqlite3.connect(db_name) as conn:
467
- cursor = conn.cursor()
468
- cursor.execute(sql, params)
469
- conn.commit()
470
- break
471
- except sqlite3.OperationalError as e:
472
- if "database is locked" in str(e) and attempt < attempts - 1:
473
- time.sleep(delay)
474
- else:
475
- raise e
476
-
477
- # def enable_wal_mode(db_name = 'curify_ideas.db'):
478
- # with sqlite3.connect(db_name) as conn:
479
- # cursor = conn.cursor()
480
- # cursor.execute("PRAGMA journal_mode=WAL;")
481
- # conn.commit()
482
-
483
- # # Create SQLite DB and table
484
- # def create_db(db_name = 'curify_ideas.db'):
485
- # with sqlite3.connect(db_name, timeout=30) as conn:
486
- # c = conn.cursor()
487
- # c.execute('''CREATE TABLE IF NOT EXISTS sessions (
488
- # session_id TEXT,
489
- # ip_address TEXT,
490
- # project_desc TEXT,
491
- # idea_desc TEXT,
492
- # idea_analysis TEXT,
493
- # prioritization_steps TEXT,
494
- # timestamp DATETIME,
495
- # PRIMARY KEY (session_id, timestamp)
496
- # )
497
- # ''')
498
- # conn.commit()
499
-
500
- # # Function to insert session data into the SQLite database
501
- # def insert_session_data(session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, db_name = 'curify_ideas.db'):
502
- # execute_with_retry('''
503
- # INSERT INTO sessions (session_id, ip_address, project_desc, idea_desc, idea_analysis, prioritization_steps, timestamp)
504
- # VALUES (?, ?, ?, ?, ?, ?, ?)
505
- # ''', (session_id, ip_address, project_desc, idea_desc, json.dumps(idea_analysis), json.dumps(prioritization_steps), datetime.now()), db_name)
506
-
507
-
508
- # In[11]:
509
-
510
-
511
- def convert_to_listed_json(input_string):
512
- """
513
- Converts a string to a listed JSON object.
514
-
515
- Parameters:
516
- input_string (str): The JSON-like string to be converted.
517
-
518
- Returns:
519
- list: A JSON object parsed into a Python list of dictionaries.
520
- """
521
- try:
522
- # Parse the string into a Python object
523
- trimmed_string = input_string[input_string.index('['):input_string.rindex(']') + 1]
524
-
525
- json_object = json.loads(trimmed_string)
526
- return json_object
527
- except json.JSONDecodeError as e:
528
- return None
529
- return None
530
- #raise ValueError(f"Invalid JSON format: {e}")
531
-
532
- def validate_and_extract_json(json_string):
533
- """
534
- Validates the JSON string, extracts fields with possible variants using fuzzy matching.
535
-
536
- Args:
537
- - json_string (str): The JSON string to validate and extract from.
538
- - field_names (list): List of field names to extract, with possible variants.
539
-
540
- Returns:
541
- - dict: Extracted values with the best matched field names.
542
- """
543
- # Try to parse the JSON string
544
- trimmed_string = json_string[json_string.index('{'):json_string.rindex('}') + 1]
545
- try:
546
- parsed_json = json.loads(trimmed_string)
547
- return parsed_json
548
- except json.JSONDecodeError as e:
549
- return None
550
-
551
- # {"error": "Parsed JSON is not a dictionary."}
552
- return None
553
-
554
- def json_to_pandas(dat_json, dat_schema = {'name':"", 'description':""}):
555
- dat_df = pd.DataFrame([dat_schema])
556
- try:
557
- dat_df = pd.DataFrame(dat_json)
558
-
559
- except Exception as e:
560
- dat_df = pd.DataFrame([dat_schema])
561
- # ValueError(f"Failed to parse LLM output as JSON: {e}\nOutput: {res}")
562
- return dat_df
563
-
564
-
565
- # In[12]:
566
-
567
-
568
- client = OpenAI(
569
- api_key= os.environ.get("OPENAI_API_KEY"), # This is the default and can be omitted
570
- )
571
-
572
- # Function to call OpenAI API with compact error handling
573
- def call_openai_api(prompt, model="gpt-4o", max_tokens=5000, retries=3, backoff_factor=2):
574
- """
575
- Send a prompt to the OpenAI API and handle potential errors robustly.
576
-
577
- Parameters:
578
- prompt (str): The user input or task prompt to send to the model.
579
- model (str): The OpenAI model to use (default is "gpt-4").
580
- max_tokens (int): The maximum number of tokens in the response.
581
- retries (int): Number of retry attempts in case of transient errors.
582
- backoff_factor (int): Backoff time multiplier for retries.
583
-
584
- Returns:
585
- str: The model's response content if successful.
586
- """
587
- for attempt in range(1, retries + 1):
588
- try:
589
- response = client.chat.completions.create(
590
- model="gpt-4o",
591
- messages=[{"role": "user", "content": prompt}],
592
- max_tokens=5000,
593
- )
594
- return response.choices[0].message.content.strip()
595
-
596
- except (openai.RateLimitError, openai.APIConnectionError) as e:
597
- logging.warning(f"Transient error: {e}. Attempt {attempt} of {retries}. Retrying...")
598
- except (openai.BadRequestError, openai.AuthenticationError) as e:
599
- logging.error(f"Unrecoverable error: {e}. Check your inputs or API key.")
600
- break
601
- except Exception as e:
602
- logging.error(f"Unexpected error: {e}. Attempt {attempt} of {retries}. Retrying...")
603
-
604
- # Exponential backoff before retrying
605
- if attempt < retries:
606
- time.sleep(backoff_factor * attempt)
607
-
608
- raise RuntimeError(f"Failed to fetch response from OpenAI API after {retries} attempts.")
609
-
610
- def fn_analyze_task(project_context, task_description):
611
- prompt = (
612
- f"You are working in the context of {project_context}. "
613
- f"Your task is to analyze the task: {task_description} "
614
- "Please analyze the following aspects: "
615
- "1) Determine which project this item belongs to. If the idea does not belong to any existing project, categorize it under 'Other'. "
616
- "2) Assess whether this idea can be treated as a concrete task. "
617
- "3) Evaluate whether a document can be generated as an intermediate result. "
618
- "4) Identify the appropriate category of the task. Possible categories are: 'Blogs/Papers', 'Tools', 'Brainstorming', 'Issues', and 'Others'. "
619
- "5) Extract the topic of the task. "
620
- "Please provide the output in JSON format using the structure below: "
621
- "{"
622
- " \"description\": \"\", "
623
- " \"project_association\": \"\", "
624
- " \"is_task\": \"Yes/No\", "
625
- " \"is_document\": \"Yes/No\", "
626
- " \"task_category\": \"\", "
627
- " \"task_topic\": \"\" "
628
- "}"
629
- )
630
- res_task_analysis = call_openai_api(prompt)
631
-
632
- try:
633
- json_task_analysis = validate_and_extract_json(res_task_analysis)
634
-
635
- return json_task_analysis
636
- except ValueError as e:
637
- logger.debug("ValueError occurred: %s", str(e), exc_info=True) # Log the exception details
638
- return None
639
-
640
-
641
- # In[13]:
642
-
643
- # Recursive Task Executor
644
- def fn_process_task(project_desc_table, task_description, bucket_name='curify'):
645
-
646
- project_context = project_desc_table.to_string(index=False)
647
- task_analysis = fn_analyze_task(project_context, task_description)
648
-
649
- if task_analysis:
650
- execution_status = []
651
- execution_results = task_analysis.copy()
652
- execution_results['deliverables'] = ''
653
-
654
- def traverse(node, previous_output=None):
655
- if not node: # If the node is None or invalid
656
- return # Exit if the node is invalid
657
-
658
- # Check if there is a condition to evaluate
659
- if "check" in node:
660
- # Safely attempt to retrieve the value from execution_results
661
- if node["check"] in execution_results:
662
- value = execution_results[node["check"]] # Evaluate the check condition
663
- traverse(node.get(value, node.get("default")), previous_output)
664
- else:
665
- # Log an error and exit, but keep partial results
666
- logger.error(f"Key '{node['check']}' not found in execution_results.")
667
- return
668
-
669
- # If the node contains an action
670
- elif "action" in node:
671
- action_name = node["action"]
672
- input_key = node.get("input", 'task_topic')
673
-
674
- if input_key in execution_results.keys():
675
- inputs = {input_key: execution_results[input_key]}
676
- else:
677
- # Log an error and exit, but keep partial results
678
- logger.error(f"Workflow action {action_name} input key {input_key} not in execution_results.")
679
- return
680
-
681
- logger.debug(f"Executing: {action_name} with inputs: {inputs}")
682
-
683
- # Execute the action function
684
- action_func = action_map.get(action_name, unsupported_task)
685
- try:
686
- output = action_func(**inputs)
687
- except Exception as e:
688
- # Handle action function failure
689
- logger.error(f"Error executing action '{action_name}': {e}")
690
- return
691
-
692
- # Store execution results or append to previous outputs
693
- execution_status.append({"action": action_name, "output": output})
694
-
695
- # Check if 'output' field exists in the node
696
- if 'output' in node:
697
- # If 'output' exists, assign the output to execution_results with the key from node['output']
698
- execution_results[node['output']] = output
699
- else:
700
- # If 'output' does not exist, append the output to 'deliverables'
701
- execution_results['deliverables'] += output
702
-
703
- # Traverse to the next node, if it exists
704
- if "next" in node and node["next"]:
705
- traverse(node["next"], previous_output)
706
-
707
- try:
708
- traverse(TASK_WORKFLOW_TREE["start"])
709
- execution_results['doc_url'] = generate_document(task_description, execution_results)
710
- except Exception as e:
711
- logger.error(f"Traverse Error: {e}")
712
- finally:
713
- # Always return partial results, even if an error occurs
714
- return task_analysis, pd.DataFrame(execution_status), execution_results
715
- else:
716
- logger.error("Empty task analysis.")
717
- return {}, pd.DataFrame(), {}
718
-
719
- # In[14]:
720
-
721
-
722
- # Initialize dataframes for the schema
723
- ideas_df = pd.DataFrame(columns=["Idea ID", "Content", "Tags"])
724
-
725
- def extract_ideas(context, text):
726
- """
727
- Extract project ideas from text, with or without a context, and return in JSON format.
728
-
729
- Parameters:
730
- context (str): Context of the extraction. Can be empty.
731
- text (str): Text to extract ideas from.
732
-
733
- Returns:
734
- list: A list of ideas, each represented as a dictionary with name and description.
735
- """
736
- if context:
737
- # Template when context is provided
738
- prompt = (
739
- f"You are working in the context of {context}. "
740
- "Please extract the ongoing projects with project name and description."
741
- "Please only the listed JSON as output string."
742
- f"Ongoing projects: {text}"
743
- )
744
- else:
745
- # Template when context is not provided
746
- prompt = (
747
- "Given the following information about the user."
748
- "Please extract the ongoing projects with project name and description."
749
- "Please only the listed JSON as output string."
750
- f"Ongoing projects: {text}"
751
- )
752
-
753
- # return the raw string
754
- return call_openai_api(prompt)
755
-
756
- def df_to_string(df, empty_message = ''):
757
- """
758
- Converts a DataFrame to a string if it is not empty.
759
- If the DataFrame is empty, returns an empty string.
760
-
761
- Parameters:
762
- ideas_df (pd.DataFrame): The DataFrame to be converted.
763
-
764
- Returns:
765
- str: A string representation of the DataFrame or an empty string.
766
- """
767
- if df.empty:
768
- return empty_message
769
- else:
770
- return df.to_string(index=False)
771
-
772
-
773
- # In[15]:
774
-
775
-
776
- # Shared state variables
777
- shared_state = {"project_desc_table": pd.DataFrame(), "task_analysis_txt": "", "execution_status": pd.DataFrame(), "execution_results": {}}
778
-
779
- # Button Action: Fetch State
780
- def fetch_updated_state():
781
- response = requests.get("http://localhost:5000/state")
782
- state = response.json()
783
- """Fetch the updated shared state from FastAPI."""
784
- return pd.DataFrame(state["project_desc_table"]), state["task_analysis_txt"], pd.DataFrame(state["execution_status"]), state["execution_results"]
785
-
786
- def update_gradio_state(project_desc_table, task_analysis_txt, execution_status, execution_results):
787
- # You can update specific components like Textbox or State
788
- shared_state['project_desc_table'] = project_desc_table
789
- shared_state['task_analysis_txt'] = task_analysis_txt
790
- shared_state['execution_status'] = execution_status
791
- shared_state['execution_results'] = execution_results
792
- return True
793
-
794
-
795
- # In[16]:
796
-
797
-
798
- # # Initialize the database
799
- # new_db = 'curify.db'
800
-
801
- # # Copy the old database to a new one
802
- # shutil.copy("curify_idea.db", new_db)
803
-
804
- #create_db(new_db)
805
- #enable_wal_mode(new_db)
806
- def project_extraction(project_description):
807
-
808
- str_projects = extract_ideas('AI-powered tools for productivity', project_description)
809
- json_projects = convert_to_listed_json(str_projects)
810
-
811
- project_desc_table = json_to_pandas(json_projects)
812
- update_gradio_state(project_desc_table, "", pd.DataFrame(), {})
813
- return project_desc_table
814
-
815
-
816
- # In[17]:
817
-
818
-
819
- # project_description = 'work on a number of projects including curify (digest, ideas, careers, projects etc), and writing a book on LLM for recommendation system, educating my 3.5-year-old boy and working on a paper for LLM reasoning.'
820
-
821
- # # convert_to_listed_json(extract_ideas('AI-powered tools for productivity', project_description))
822
-
823
- # task_description = 'Build an interview bot for the curify digest project.'
824
- # task_analysis, reasoning_path = generate_reasoning_path(project_description, task_description)
825
-
826
- # steps = store_and_execute_task(task_description, reasoning_path)
827
-
828
- # def message_back(task_message, execution_status, doc_url, from_whatsapp):
829
- # # Convert task steps to a simple numbered list
830
- # task_steps_list = "\n".join(
831
- # [f"{i + 1}. {step['action']} - {step.get('output', '')}" for i, step in enumerate(execution_status.to_dict(orient="records"))]
832
- # )
833
-
834
- # # Format the body message
835
- # body_message = (
836
- # f"*Task Message:*\n{task_message}\n\n"
837
- # f"*Execution Status:*\n{task_steps_list}\n\n"
838
- # f"*Doc URL:*\n{doc_url}\n\n"
839
- # )
840
-
841
- # # Send response back to WhatsApp
842
- # try:
843
- # twillo_client.messages.create(
844
- # from_=twilio_phone_number,
845
- # to=from_whatsapp,
846
- # body=body_message
847
- # )
848
- # except Exception as e:
849
- # logger.error(f"Twilio Error: {e}")
850
- # raise HTTPException(status_code=500, detail=f"Error sending WhatsApp message: {str(e)}")
851
-
852
- # return {"status": "success"}
853
-
854
- # # Initialize the Whisper pipeline
855
- # whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
856
-
857
- # # Function to transcribe audio from a media URL
858
- # def transcribe_audio_from_media_url(media_url):
859
- # try:
860
- # media_response = requests.get(media_url, auth=HTTPBasicAuth(account_sid, auth_token))
861
- # # Download the media file
862
- # media_response.raise_for_status()
863
- # audio_data = media_response.content
864
-
865
- # # Save the audio data to a file for processing
866
- # audio_file_path = "temp_audio_file.mp3"
867
- # with open(audio_file_path, "wb") as audio_file:
868
- # audio_file.write(audio_data)
869
-
870
- # # Transcribe the audio using Whisper
871
- # transcription = whisper_pipeline(audio_file_path, return_timestamps=True)
872
- # logger.debug(f"Transcription: {transcription['text']}")
873
- # return transcription["text"]
874
-
875
- # except Exception as e:
876
- # logger.error(f"An error occurred: {e}")
877
- # return None
878
-
879
-
880
- # In[18]:
881
-
882
 
883
  app = FastAPI()
884
 
885
- # @app.get("/state")
886
- # async def fetch_state():
887
- # return shared_state
888
-
889
- # @app.route("/whatsapp-webhook/", methods=["POST"])
890
- # async def whatsapp_webhook(request: Request):
891
- # form_data = await request.form()
892
- # # Log the form data to debug
893
- # print("Received data:", form_data)
894
-
895
- # # Extract message and user information
896
- # incoming_msg = form_data.get("Body", "").strip()
897
- # from_number = form_data.get("From", "")
898
- # media_url = form_data.get("MediaUrl0", "")
899
- # media_type = form_data.get("MediaContentType0", "")
900
-
901
- # # Initialize response variables
902
- # transcription = None
903
-
904
- # if media_type.startswith("audio"):
905
- # # If the media is an audio or video file, process it
906
- # try:
907
- # transcription = transcribe_audio_from_media_url(media_url)
908
- # except Exception as e:
909
- # return JSONResponse(
910
- # {"error": f"Failed to process voice input: {str(e)}"}, status_code=500
911
- # )
912
- # # Determine message content: use transcription if available, otherwise use text message
913
- # processed_input = transcription if transcription else incoming_msg
914
-
915
- # logger.debug(f"Processed input: {processed_input}")
916
- # try:
917
- # # Generate response
918
- # project_desc_table, _ = fetch_updated_state()
919
- # if not project_desc_table.empty:
920
- # task_analysis_txt, execution_status, execution_results = fn_process_task(project_desc_table, processed_input)
921
- # update_gradio_state(task_analysis_txt, execution_status, execution_results)
922
-
923
- # doc_url = 'Fail to generate doc'
924
- # if 'doc_url' in execution_results:
925
- # doc_url = execution_results['doc_url']
926
-
927
- # # Respond to the user on WhatsApp with the processed idea
928
- # response = message_back(processed_input, execution_status, doc_url, from_number)
929
- # logger.debug(response)
930
-
931
- # return JSONResponse(content=str(response))
932
- # except Exception as e:
933
- # logger.error(f"Error during task processing: {e}")
934
- # return {"error": str(e)}
935
-
936
-
937
- # # In[19]:
938
-
939
-
940
- # # Mock Gmail Login Function
941
- # def mock_login(email):
942
- # if email.endswith("@gmail.com"):
943
- # return f"✅ Logged in as {email}", gr.update(visible=False), gr.update(visible=True)
944
- # else:
945
- # return "❌ Invalid Gmail address. Please try again.", gr.update(), gr.update()
946
-
947
- # # User Onboarding Function
948
- # def onboarding_survey(role, industry, project_description):
949
- # return (project_extraction(project_description),
950
- # gr.update(visible=False), gr.update(visible=True))
951
-
952
- # # Mock Integration Functions
953
- # def integrate_todoist():
954
- # return "✅ Successfully connected to Todoist!"
955
-
956
- # def integrate_evernote():
957
- # return "✅ Successfully connected to Evernote!"
958
-
959
- # def integrate_calendar():
960
- # return "✅ Successfully connected to Google Calendar!"
961
-
962
- # def load_svg_with_size(file_path, width="600px", height="400px"):
963
- # # Read the SVG content from the file
964
- # with open(file_path, "r", encoding="utf-8") as file:
965
- # svg_content = file.read()
966
-
967
- # # Add inline styles to control width and height
968
- # styled_svg = f"""
969
- # <div style="width: {width}; height: {height}; overflow: auto;">
970
- # {svg_content}
971
- # </div>
972
- # """
973
- # return styled_svg
974
-
975
-
976
- # # In[20]:
977
-
978
-
979
- # # Gradio Demo
980
- # def create_gradio_interface(state=None):
981
- # with gr.Blocks(
982
- # css="""
983
- # .gradio-table td {
984
- # white-space: normal !important;
985
- # word-wrap: break-word !important;
986
- # }
987
- # .gradio-table {
988
- # width: 100% !important; /* Adjust to 100% to fit the container */
989
- # table-layout: fixed !important; /* Fixed column widths */
990
- # overflow-x: hidden !important; /* Disable horizontal scrolling */
991
- # }
992
- # .gradio-container {
993
- # overflow-x: hidden !important; /* Disable horizontal scroll for entire container */
994
- # padding: 0 !important; /* Remove any default padding */
995
- # }
996
- # .gradio-column {
997
- # max-width: 100% !important; /* Ensure columns take up full width */
998
- # overflow: hidden !important; /* Hide overflow to prevent horizontal scroll */
999
- # }
1000
- # .gradio-row {
1001
- # overflow-x: hidden !important; /* Prevent horizontal scroll on rows */
1002
- # }
1003
- # """) as demo:
1004
-
1005
- # # Page 1: Mock Gmail Login
1006
- # with gr.Group(visible=True) as login_page:
1007
- # gr.Markdown("### **1️⃣ Login with Gmail**")
1008
- # email_input = gr.Textbox(label="Enter your Gmail Address", placeholder="[email protected]")
1009
- # login_button = gr.Button("Login")
1010
- # login_result = gr.Textbox(label="Login Status", interactive=False, visible=False)
1011
- # # Page 2: User Onboarding
1012
- # with gr.Group(visible=False) as onboarding_page:
1013
- # gr.Markdown("### **2️⃣ Tell Us About Yourself**")
1014
- # role = gr.Textbox(label="What is your role?", placeholder="e.g. Developer, Designer")
1015
- # industry = gr.Textbox(label="Which industry are you in?", placeholder="e.g. Software, Finance")
1016
- # project_description = gr.Textbox(label="Describe your project", placeholder="e.g. A task management app")
1017
- # submit_survey = gr.Button("Submit")
1018
-
1019
- # # Page 3: Mock Integrations with Separate Buttons
1020
- # with gr.Group(visible=False) as integrations_page:
1021
- # gr.Markdown("### **3️⃣ Connect Integrations**")
1022
- # gr.Markdown("Click on the buttons below to connect each tool:")
1023
-
1024
- # # Separate Buttons and Results for Each Integration
1025
- # todoist_button = gr.Button("Connect to Todoist")
1026
- # todoist_result = gr.Textbox(label="Todoist Status", interactive=False, visible=False)
1027
-
1028
- # evernote_button = gr.Button("Connect to Evernote")
1029
- # evernote_result = gr.Textbox(label="Evernote Status", interactive=False, visible=False)
1030
-
1031
- # calendar_button = gr.Button("Connect to Google Calendar")
1032
- # calendar_result = gr.Textbox(label="Google Calendar Status", interactive=False, visible=False)
1033
-
1034
- # # Skip Button to proceed directly to next page
1035
- # skip_integrations = gr.Button("Skip ➡️")
1036
- # next_button = gr.Button("Proceed to QR Code")
1037
-
1038
- # with gr.Group(visible=False) as qr_code_page:
1039
- # # Page 4: QR Code and Curify Ideas
1040
- # gr.Markdown("## Curify: Unified AI Tools for Productivity")
1041
-
1042
- # with gr.Tab("Curify Idea"):
1043
- # with gr.Row():
1044
- # with gr.Column():
1045
- # gr.Markdown("#### ** QR Code**")
1046
- # # Path to your local SVG file
1047
- # svg_file_path = "qr.svg"
1048
- # # Load the SVG content
1049
- # svg_content = load_svg_with_size(svg_file_path, width="200px", height="200px")
1050
- # gr.HTML(svg_content)
1051
-
1052
- # # Column 1: Webpage rendering
1053
- # with gr.Column():
1054
-
1055
- # gr.Markdown("## Projects Overview")
1056
- # project_desc_table = gr.DataFrame(
1057
- # type="pandas"
1058
- # )
1059
-
1060
- # gr.Markdown("## Enter task message.")
1061
- # idea_input = gr.Textbox(
1062
- # label=None,
1063
- # placeholder="Describe the task you want to execute (e.g., Research Paper Review)")
1064
-
1065
- # task_btn = gr.Button("Generate Task Steps")
1066
- # fetch_state_btn = gr.Button("Fetch Updated State")
1067
-
1068
- # with gr.Column():
1069
- # gr.Markdown("## Task analysis")
1070
- # task_analysis_txt = gr.Textbox(
1071
- # label=None,
1072
- # placeholder="Here is the execution status of your task...")
1073
-
1074
- # gr.Markdown("## Execution status")
1075
- # execution_status = gr.DataFrame(
1076
- # type="pandas"
1077
- # )
1078
- # gr.Markdown("## Execution output")
1079
- # execution_results = gr.JSON(
1080
- # label=None
1081
- # )
1082
- # state_output = gr.State() # Add a state output to hold the state
1083
-
1084
- # task_btn.click(
1085
- # fn_process_task,
1086
- # inputs=[project_desc_table, idea_input],
1087
- # outputs=[task_analysis_txt, execution_status, execution_results]
1088
- # )
1089
-
1090
- # fetch_state_btn.click(
1091
- # fetch_updated_state,
1092
- # inputs=None,
1093
- # outputs=[project_desc_table, task_analysis_txt, execution_status, execution_results]
1094
- # )
1095
-
1096
- # # Page 1 -> Page 2 Transition
1097
- # login_button.click(
1098
- # mock_login,
1099
- # inputs=email_input,
1100
- # outputs=[login_result, login_page, onboarding_page]
1101
- # )
1102
-
1103
- # # Page 2 -> Page 3 Transition (Submit and Skip)
1104
- # submit_survey.click(
1105
- # onboarding_survey,
1106
- # inputs=[role, industry, project_description],
1107
- # outputs=[project_desc_table, onboarding_page, integrations_page]
1108
- # )
1109
-
1110
- # # Integration Buttons
1111
- # todoist_button.click(integrate_todoist, outputs=todoist_result)
1112
- # evernote_button.click(integrate_evernote, outputs=evernote_result)
1113
- # calendar_button.click(integrate_calendar, outputs=calendar_result)
1114
-
1115
- # # Skip Integrations and Proceed
1116
- # skip_integrations.click(
1117
- # lambda: (gr.update(visible=False), gr.update(visible=True)),
1118
- # outputs=[integrations_page, qr_code_page]
1119
- # )
1120
-
1121
- # # # Set the load_fn to initialize the state when the page is loaded
1122
- # # demo.load(
1123
- # # curify_ideas,
1124
- # # inputs=[project_input, idea_input],
1125
- # # outputs=[task_steps, task_analysis_txt, state_output]
1126
- # # )
1127
- # return demo
1128
- # # Load function to initialize the state
1129
- # # demo.load(load_fn, inputs=None, outputs=[state]) # Initialize the state when the page is loaded
1130
-
1131
- @app.on_event("startup")
1132
- async def startup_event():
1133
- logger.debug("Application startup initiated")
1134
- # Simulate heavy operation
1135
- # from transformers import pipeline
1136
- # global model
1137
- # model = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
1138
- logger.debug("Application startup complete")
1139
-
1140
- # In[21]:
1141
- @app.get("/", response_class=JSONResponse)
1142
  async def index():
1143
- return {"status": "FastAPI is running!"}
1144
-
1145
-
1146
- # demo = create_gradio_interface()
1147
- # # Use Gradio's `server_app` to get an ASGI app for Blocks
1148
- # gradio_asgi_app = gr.routes.App.create_app(demo)
1149
-
1150
- # # Mount the Gradio ASGI app at "/gradio"
1151
- # app.mount("/gradio", gradio_asgi_app)
1152
-
1153
- # # Redirect from the root endpoint to the Gradio app
1154
- # @app.get("/", response_class=RedirectResponse)
1155
- # async def index():
1156
- # return RedirectResponse(url="/gradio", status_code=307)
1157
-
1158
- # Run the FastAPI server using uvicorn
1159
- if __name__ == "__main__":
1160
- uvicorn.run("app:app", host="0.0.0.0", port=5000, reload=True, log_level="debug")
1161
-
1162
- # In[ ]:
 
1
+ from fastapi import FastAPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  app = FastAPI()
4
 
5
+ @app.get("/")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  async def index():
7
+ return {"message": "App is running"}