Spaces:
Sleeping
Sleeping
File size: 36,230 Bytes
6797c6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Configure LLM options\n",
"#from langchain_community.chat_models import ChatOllama\n",
"from langchain_ollama import ChatOllama\n",
"from langchain_community.llms import DeepInfra\n",
"import os\n",
"from dotenv import load_dotenv\n",
"from langchain_community.utilities import SQLDatabase\n",
"\n",
"load_dotenv()\n",
"\n",
"api = os.getenv(\"DEEPINFRA_API_KEY\")\n",
"# API setup (optional)\n",
"deepinfra_model = \"meta-llama/Llama-3.3-70B-Instruct\"\n",
"# \"https://api.python.langchain.com/en/latest/llms/langchain_community.llms.deepinfra.DeepInfra.html\"\n",
"\n",
"di = DeepInfra(model_id=deepinfra_model,\n",
" deepinfra_api_token=api)\n",
"\n",
"# Choose which model to use\n",
"llm = di \n",
"\n",
"# Initialize database connection\n",
"db = SQLDatabase.from_uri(\"sqlite:///Spring_2025_courses.db\", sample_rows_in_table_info=0)\n",
"\n",
"# Helper functions\n",
"def get_schema(_):\n",
" \"\"\"Retrieve database schema\"\"\"\n",
" return db.get_table_info()\n",
"\n",
"def run_query(query):\n",
" \"\"\"Execute SQL query\"\"\"\n",
" return db.run(query)\n",
"\n",
"# print(get_schema(_))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"# SQL generation prompt\n",
"system_prompt = \"\"\" \n",
"You are a SQLite expert. Given an input question, create one syntactically correct SQLite query to run. Generate only one query. No pre-amble.\n",
"\n",
"Here is the relevant table information:\n",
"schema: {schema}\n",
"Departments: 'Applied Math & Statistics', 'ART', 'Biomedical Science (BMS)', 'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)', 'Data Science (DS)', 'Dance', 'General Education (GE)'\n",
"New/Repeat: Have no values \n",
"\n",
"Tips:\n",
"- Use LIKE instead of = in the queries\n",
"- Don't use New/Repeat in queries\n",
"\n",
"Below are a number of examples of questions and their corresponding SQL queries.\n",
"\n",
"example 1:\n",
"Question:List all departments.\n",
"SQL query:SELECT Department FROM Spring_2025_courses;\n",
"\n",
"example 2:\n",
"Question:Find all classes that are taught by Dr. Qu.\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';\n",
"\n",
"example 3:\n",
"Question:List all courses in the Data Science department.\n",
"SQL query:SELECT CourseCode, CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';\n",
"\n",
"example 4:\n",
"Question:Find the total number of courses offered for Spring 2025.\n",
"SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses;\n",
"\n",
"example 5:\n",
"Question:List all professors from Biomed Department.\n",
"SQL query:SELECT Instructor FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';\n",
"\n",
"example 6:\n",
"Question:Which courses are available in the Biomed department for Spring 2025?\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';\n",
"\n",
"example 7:\n",
"Question:How many courses are offered under the Arts Management (BFA) program?\n",
"SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Department LIKE Program LIKE '%BFA%'\n",
"\n",
"example 8:\n",
"Question:Which courses are available for the Master of Science in Applied Math?\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Program LIKE '%Master of Science%' AND Department LIKE '%Applied Math%';\n",
"\n",
"Write only one SQLite query that would answer the user's question. No pre-amble.\n",
"\"\"\"\n",
"\n",
"human_prompt = \"\"\"Based on the table schema below, write a SQL query that would answer the user's question:\n",
"{schema}\n",
"\n",
"Question: {question}\n",
"SQL Query:\"\"\"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", system_prompt),\n",
" (\"human\", human_prompt),\n",
"])\n",
"\n",
"# Build query generation chain\n",
"sql_generator = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n",
" | prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"# Natural language response generation\n",
"nl_system_prompt = \"\"\"Given an input question and SQL response, convert it to a natural language answer. \n",
"\n",
"Below are a number of examples of questions and their corresponding SQL queries.\n",
"\n",
"example 1: \n",
"Question: Which courses are available in the Data Science department?\n",
"SQL Query: SELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';\n",
"SQL Response: [('Introduction to Data Science',), ('Career Development in Data Science',), ('Data Structures',), ('Data Visualization',), ('Data Inference',), ('Data Mining',), ('Big Data Engineering',), ('Independent Study for Data Science',), ('Senior Project',), ('Mathematical Foundation for Data Science (Online)',), ('Computational Foundation for Data Science (Online)',), ('Probability for Data Science (Online)',), ('Exploratory Data Analysis and Visualization',), ('Modern Applied Statistical Learning',), ('Data Mining for Business',), ('Big Data and Data Engineering',), ('Design and Analysis of Experiments',), ('Design and Analysis of Experiments',), ('Computer Vision and Natural Language Processing (Independent Study)',), ('Capstone Project',)]\n",
"Response: The available courses in the Data Science department are Introduction to Data Science, Career Development in Data Science, Data Structures, Data Visualization, Data Inference, Data Mining, Big Data Engineering, Independent Study for Data Science, Senior Project, Mathematical Foundation for Data Science, Computational Foundation for Data Science, Probability for Data Science, Exploratory Data Analysis and Visualization, Modern Applied Statistical Learning, Data Mining for Business, Big Data and Data Engineering, Design and Analysis of Experiments, and Capstone Project.\n",
"\n",
"example 2:\n",
"Question: Find all classes that are taught by Dr. Qu.\n",
"SQL Query: SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';\n",
"SQL Response: [('Introduction to Data Science',), ('Data Structures',), ('Data Mining',), ('Computational Foundation for Data Science (Online)',), ('Data Mining for Business',), ('Computer Vision and Natural Language Processing (Independent Study)',)]\n",
"Response: Dr. Qu is teaching Introduction to Data Science, Data Structures, Data Mining, Computational Foundation for Data Science, Data Mining for Business, and Computer Vision and Natural Language Processing.\n",
"\n",
"Generate only ONE answer based on the SQL response. No pre-amble.\n",
"\"\"\"\n",
"\n",
"response_prompt = \"\"\"Based on the table schema below, question, sql query, and sql response, write a natural language response:\n",
"{schema}\n",
"\n",
"Question:{question}\n",
"SQL Query:{query}\n",
"SQL Response:{response}\n",
"Response:\"\"\"\n",
"\n",
"nl_prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", nl_system_prompt),\n",
" (\"human\", response_prompt),\n",
"])\n",
"\n",
"# Complete chain with natural language output\n",
"complete_chain = (\n",
" RunnablePassthrough.assign(query=sql_generator)\n",
" | RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" response=lambda x: db.run(x['query']),\n",
" )\n",
" | nl_prompt\n",
" | llm\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def demonstrate_chain_steps(question: str):\n",
" \"\"\"\n",
" Demonstrate each step of the complete chain\n",
" \n",
" Args:\n",
" question (str): Natural language question\n",
" \"\"\"\n",
" print(\"\\n=== Chain Demonstration ===\\n\")\n",
" \n",
" # Step 1: Initial input\n",
" print(\"1. Initial Input:\")\n",
" print({\"question\": question})\n",
" \n",
" # Step 2: Generate SQL\n",
" sql = sql_generator.invoke({\"question\": question})\n",
" print(\"\\n2. Generated SQL:\")\n",
" print(sql)\n",
" \n",
" # Step 3: Execute SQL\n",
" db_result = db.run(sql)\n",
" print(\"\\n3. Database Result:\")\n",
" print(db_result)\n",
" \n",
" # Step 4: Get schema\n",
" schema = get_schema(None)\n",
" print(\"\\n4. Database Schema:\")\n",
" print(schema[:200] + \"...\") # Truncated for readability\n",
" \n",
" # Step 5: Complete response\n",
" final_response = complete_chain.invoke({\"question\": question})\n",
" print(\"\\n5. Final Natural Language Response:\")\n",
" print(final_response)\n",
" \n",
" print(\"\\n=== End Demonstration ===\\n\")\n",
"\n",
"# Example usage\n",
"demonstrate_chain_steps(\"Find all classes that are taught by Dr. Bess.\")"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.prompts import MessagesPlaceholder\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n",
"# SQL generation prompt\n",
"system_prompt = \"\"\" \n",
"You are a SQLite expert. Given an input question, create one syntactically correct SQLite query to run. Generate only one query. No preamble.\n",
"\n",
"Here is the relevant table information:\n",
"schema: {schema}\n",
"Departments: 'Applied Math & Statistics', 'ART', 'Biomedical Science (BMS)', 'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)', 'Data Science (DS)', 'Dance', 'General Education (GE)'\n",
"New/Repeat: Have no values (Don't use New/Repeat in queries)\n",
"\n",
"Tips:\n",
"- Use LIKE instead of = in the queries\n",
"\n",
"Below are a number of examples of questions and their corresponding SQL queries.\n",
"\n",
"example 1:\n",
"Question: List all departments.\n",
"SQL query: SELECT Department FROM Spring_2025_courses;\n",
"\n",
"example 2:\n",
"Question: Find all classes that are taught by Dr. Qu.\n",
"SQL query: SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';\n",
"\n",
"example 3:\n",
"Question: List all courses in the Data Science department.\n",
"SQL query: SELECT CourseCode, CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';\n",
"\n",
"example 4:\n",
"Question: Find the total number of courses offered for Spring 2025.\n",
"SQL query: SELECT COUNT(CourseCode) FROM Spring_2025_courses;\n",
"\n",
"example 5:\n",
"Question: List all professors from Biomed Department.\n",
"SQL query: SELECT Instructor FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';\n",
"\n",
"Write only one SQLite query that would answer the user's question. No preamble.\n",
"\"\"\"\n",
"\n",
"# Initialize memory\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Updated prompt with memory\n",
"memory_prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", \"Convert questions to SQL using schema: {schema}\"),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
"])\n",
"\n",
"# Memory-enabled query chain\n",
"def save_context(input_output):\n",
" \"\"\"Save conversation context\"\"\"\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output[\"output\"]\n",
"\n",
"sql_chain_with_memory = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema,\n",
" history=lambda x: memory.load_memory_variables(x)[\"history\"],\n",
" )\n",
" | memory_prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"# Final chain with memory\n",
"sql_memory_chain = RunnablePassthrough.assign(output=sql_chain_with_memory) | save_context"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import uuid\n",
"from langchain_core.messages import HumanMessage\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langgraph.graph import START, MessagesState, StateGraph\n",
"\n",
"# SQL generation prompt\n",
"system_prompt = \"\"\" \n",
"You are a SQLite expert. Given an input question, create one syntactically correct SQLite query to run. Generate only one query. No pre-amble.\n",
"\n",
"Here is the relevant table information:\n",
"schema: {schema}\n",
"Departments: 'Applied Math & Statistics', 'ART', 'Biomedical Science (BMS)', 'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)', 'Data Science (DS)', 'Dance', 'General Education (GE)'\n",
"New/Repeat: Have no values (Don't use New/Repeat in queries)\n",
"\n",
"Tips:\n",
"- Use LIKE instead of = in the queries\n",
"\n",
"Below are a number of examples of questions and their corresponding SQL queries.\n",
"\n",
"example 1:\n",
"Question:List all departments.\n",
"SQL query:SELECT Department FROM Spring_2025_courses;\n",
"\n",
"example 2:\n",
"Question:Find all classes that are taught by Dr. Qu.\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';\n",
"\n",
"example 3:\n",
"Question:List all courses in the Data Science department.\n",
"SQL query:SELECT CourseCode, CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';\n",
"\n",
"example 4:\n",
"Question:Find the total number of courses offered for Spring 2025.\n",
"SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses;\n",
"\n",
"example 5:\n",
"Question:List all professors from Biomed Department.\n",
"SQL query:SELECT Instructor FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';\n",
"\n",
"example 6:\n",
"Question:Which courses are available in the Biomed department for Spring 2025?\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';\n",
"\n",
"example 7:\n",
"Question:How many courses are offered under the Arts Management (BFA) program?\n",
"SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Department LIKE Program LIKE '%BFA%'\n",
"\n",
"example 8:\n",
"Question:Which courses are available for the Master of Science in Applied Math?\n",
"SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Program LIKE '%Master of Science%' AND Department LIKE '%Applied Math%';\n",
"\n",
"Write only one SQLite query that would answer the user's question. No pre-amble.\n",
"\"\"\"\n",
"\n",
"# Define a new graph\n",
"workflow = StateGraph(state_schema=MessagesState)\n",
"\n",
"# Memory initialization\n",
"memory = ConversationBufferMemory(return_messages=True)\n",
"\n",
"# Define the function that calls the model\n",
"def call_model(state: MessagesState):\n",
" response = llm.invoke(state[\"messages\"])\n",
" return {\"messages\": response}\n",
"\n",
"# Define the two nodes we will cycle between\n",
"workflow.add_edge(START, \"model\")\n",
"workflow.add_node(\"model\", call_model)\n",
"\n",
"# Adding memory is straightforward in langgraph\n",
"memory_saver = MemorySaver()\n",
"\n",
"app = workflow.compile(checkpointer=memory_saver)\n",
"\n",
"# The thread id is a unique key that identifies this particular conversation.\n",
"thread_id = uuid.uuid4()\n",
"config = {\"configurable\": {\"thread_id\": thread_id}}\n",
"\n",
"# Updated prompt with memory\n",
"memory_prompt = ChatPromptTemplate.from_messages([\n",
" (\"system\", system_prompt),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
"])\n",
"\n",
"# Memory-enabled query chain\n",
"def save_context(input_output):\n",
" \"\"\"Save conversation context\"\"\"\n",
" output = {\"output\": input_output.pop(\"output\")}\n",
" memory.save_context(input_output, output)\n",
" return output[\"output\"]\n",
"\n",
"sql_chain_with_memory = (\n",
" RunnablePassthrough.assign(\n",
" schema=get_schema, # Placeholder function to provide schema\n",
" history=lambda x: memory.load_memory_variables(x)[\"history\"],\n",
" )\n",
" | memory_prompt\n",
" | llm.bind(stop=[\"\\nSQLResult:\"])\n",
" | StrOutputParser()\n",
")\n",
"\n",
"# Final chain with memory\n",
"sql_memory_chain = RunnablePassthrough.assign(output=sql_chain_with_memory) | save_context\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # Example conversation\n",
"# input_message = HumanMessage(content=\"Which courses are available for the Bachelor of Science in Data Science?\")\n",
"# for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
"# event[\"messages\"][-1].pretty_print()\n",
"\n",
"# # Confirming memory functionality\n",
"# input_message = HumanMessage(content=\"Who is teaching the first course on the list?\")\n",
"# for event in app.stream({\"messages\": [input_message]}, config, stream_mode=\"values\"):\n",
"# event[\"messages\"][-1].pretty_print()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def display_query_result(question, include_sql=False):\n",
" \"\"\"\n",
" Display query results in a formatted way\n",
" \n",
" Args:\n",
" question (str): Natural language question\n",
" include_sql (bool): Whether to show the generated SQL\n",
" \"\"\"\n",
" # Generate SQL and get response\n",
" sql = sql_generator.invoke({\"question\": question})\n",
" response = complete_chain.invoke({\"question\": question})\n",
" \n",
" # Print formatted output\n",
" print(\"\\n\" + \"=\"*50)\n",
" print(f\"Question: {question}\")\n",
" if include_sql:\n",
" print(f\"\\nGenerated SQL: {sql}\")\n",
" print(f\"\\nAnswer: {response}\")\n",
" print(\"=\"*50 + \"\\n\")\n",
"\n",
"# Example usage\n",
"display_query_result(\"Which courses are available in the Data Science department for Spring 2025?\", include_sql=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Test the chain\n",
"def display_conversation():\n",
" \"\"\"Display the current conversation history.\"\"\"\n",
" history = memory.load_memory_variables({})[\"history\"]\n",
" print(\"\\nConversation History:\")\n",
" print(\"=\" * 50)\n",
" for msg in history:\n",
" role = \"Human\" if msg.type == \"human\" else \"Assistant\"\n",
" print(f\"{role}: {msg.content}\\n\")\n",
"\n",
"\n",
"# Test input and output\n",
"response1 = sql_memory_chain.invoke({\"question\": \"Which courses are available for the Bachelor of Science in Data Science?\"})\n",
"print(\"First Response:\", response1)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response2 = sql_memory_chain.invoke({\"question\": \"Who is teaching the first course on the list?\"})\n",
"print(\"Follow-up Response:\", response2)\n",
"\n",
"display_conversation()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def safe_query(question):\n",
" \"\"\"\n",
" Safely execute a query with error handling\n",
" \n",
" Args:\n",
" question (str): Natural language question\n",
" Returns:\n",
" dict: Result and status\n",
" \"\"\"\n",
" try:\n",
" response = complete_chain.invoke({\"question\": question})\n",
" return {\n",
" \"success\": True,\n",
" \"response\": response\n",
" }\n",
" except Exception as e:\n",
" return {\n",
" \"success\": False,\n",
" \"error\": str(e)\n",
" }\n",
"\n",
"# Example usage\n",
"result = safe_query(\"Which courses are available in the Data Science department for Spring 2025?\")\n",
"if result[\"success\"]:\n",
" print(\"Answer:\", result[\"response\"])\n",
"else:\n",
" print(\"Error:\", result[\"error\"])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from typing import Dict, List\n",
"\n",
"class InputValidator:\n",
" \"\"\"Input validation and sanitization for database queries\"\"\"\n",
" \n",
" # Restricted words that might indicate harmful queries\n",
" RESTRICTED_WORDS = {\n",
" 'delete', 'drop', 'truncate', 'update', 'insert', \n",
" 'alter', 'create', 'replace', 'modify', 'grant'\n",
" }\n",
" \n",
" # Allowed table names from our database\n",
" ALLOWED_TABLES = ['spring_2025_courses'] # in lowercase\n",
" \n",
" def __init__(self):\n",
" self.error_messages = []\n",
" \n",
" def validate_question(self, question: str) -> bool:\n",
" \"\"\"\n",
" Validate a natural language question\n",
" \n",
" Args:\n",
" question (str): User's input question\n",
" \n",
" Returns:\n",
" bool: True if valid, False otherwise\n",
" \"\"\"\n",
" self.error_messages = []\n",
" \n",
" # Check if question is empty or too long\n",
" if not question or not question.strip():\n",
" self.error_messages.append(\"Question cannot be empty\")\n",
" return False\n",
" \n",
" if len(question) > 500:\n",
" self.error_messages.append(\"Question is too long (max 500 characters)\")\n",
" return False\n",
" \n",
" # Check for basic SQL injection attempts\n",
" question_lower = question.lower()\n",
" if any(word in question_lower for word in self.RESTRICTED_WORDS):\n",
" self.error_messages.append(\"Question contains restricted keywords\")\n",
" return False\n",
" \n",
" # Check for excessive special characters\n",
" if re.search(r'[;{}\\\\]', question):\n",
" self.error_messages.append(\"Question contains invalid characters\")\n",
" return False\n",
" \n",
" return True\n",
" \n",
" def get_error_messages(self) -> List[str]:\n",
" \"\"\"Get all error messages from validation\"\"\"\n",
" return self.error_messages"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"class QueryValidator:\n",
" \"\"\"Validate generated SQL queries before execution\"\"\"\n",
"\n",
" def __init__(self, db_connection):\n",
" self.db = db_connection\n",
" self.error_messages = []\n",
" \n",
" def get_error_messages(self) -> List[str]:\n",
" \"\"\"Get all error messages from validation\"\"\"\n",
" return self.error_messages\n",
" \n",
" def validate_sql(self, sql: str) -> bool:\n",
" \"\"\"Validate generated SQL query\"\"\"\n",
" sql_lower = sql.lower()\n",
" \n",
" # Check if query is read-only (SELECT only)\n",
" if not sql_lower.strip().startswith('select'):\n",
" self.error_messages.append(\"Only SELECT queries are allowed\")\n",
" return False\n",
" \n",
" # Check for multiple statements\n",
" if ';' in sql[:-1]: # Allow semicolon at the end\n",
" self.error_messages.append(\"Multiple SQL statements are not allowed\")\n",
" return False\n",
" \n",
" # Validate table names\n",
" table = self._extract_table_names(sql_lower)\n",
" if table not in InputValidator.ALLOWED_TABLES:\n",
" self.error_messages.append(\"Query contains invalid table names\")\n",
" return False\n",
" \n",
" return True\n",
" \n",
" def _extract_table_names(self, sql: str) -> str:\n",
" \"\"\"Extract table names from SQL query\"\"\"\n",
" # Simple regex to extract table names\n",
" # Note: This is a basic implementation\n",
" from_matches = re.findall(r'from\\s+([a-zA-Z_][a-zA-Z0-9_]*)', sql.lower())\n",
" # join_matches = re.findall(r'join\\s+([a-zA-Z_][a-zA-Z0-9_]*)', sql)\n",
" return from_matches[0]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"class SafeQueryExecutor:\n",
" \"\"\"Safe execution of natural language queries\"\"\"\n",
" \n",
" def __init__(self, db_connection, llm_chain):\n",
" self.input_validator = InputValidator()\n",
" self.query_validator = QueryValidator(db_connection)\n",
" self.db = db_connection\n",
" self.chain = llm_chain\n",
" \n",
" def execute_safe_query(self, question: str) -> Dict:\n",
" \"\"\"\n",
" Safely execute a natural language query\n",
" \n",
" Args:\n",
" question (str): User's natural language question\n",
" \n",
" Returns:\n",
" dict: Query result and status\n",
" \"\"\"\n",
" # Validate input\n",
" if not self.input_validator.validate_question(question):\n",
" return {\n",
" 'success': False,\n",
" 'error': self.input_validator.get_error_messages(),\n",
" 'query': None,\n",
" 'result': None\n",
" }\n",
" \n",
" try:\n",
" # Generate SQL query\n",
" sql_query = sql_generator.invoke({\"question\": question})\n",
" \n",
" # Validate generated SQL\n",
" if not self.query_validator.validate_sql(sql_query):\n",
" return {\n",
" 'success': False,\n",
" 'error': self.query_validator.get_error_messages(),\n",
" 'query': sql_query,\n",
" 'result': None\n",
" }\n",
" \n",
" # Execute query\n",
" result = complete_chain.invoke({\"question\": question})\n",
" \n",
" return {\n",
" 'success': True,\n",
" 'error': None,\n",
" 'query': sql_query,\n",
" 'result': result\n",
" }\n",
" \n",
" except Exception as e:\n",
" return {\n",
" 'success': False,\n",
" 'error': [str(e)],\n",
" 'query': None,\n",
" 'result': None\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Initialize the safe executor\n",
"safe_executor = SafeQueryExecutor(db, complete_chain)\n",
"\n",
"result1 = safe_executor.execute_safe_query(\"Which courses are available in the Data Science department for Spring 2025?\")\n",
"print(\"\\nValid Query Result:\")\n",
"print(result1)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Valid Query Result:\n",
"{'success': True, 'error': None, 'query': \" \\nSELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';\", 'result': ' The available courses in the Data Science department for Spring 2025 are Introduction to Data Science, Career Development in Data Science, Data Structures, Data Visualization, Data Inference, Data Mining, Big Data Engineering, Independent Study for Data Science, Senior Project, Mathematical Foundation for Data Science, Computational Foundation for Data Science, Probability for Data Science, Exploratory Data Analysis and Visualization, Modern Applied Statistical Learning, Data Mining for Business, Big Data and Data Engineering, Design and Analysis of Experiments, and Capstone Project.'}\n",
"\n",
"Invalid Query Result:\n",
"{'success': True, 'error': None, 'query': \" \\nSELECT * FROM Spring_2025_courses WHERE CourseTitle LIKE '%Introduction to Python%';\", 'result': ' The course Introduction to Python is not offered in Spring 2025.'}\n",
"\n",
"Restricted Query Result:\n",
"{'success': False, 'error': ['Multiple SQL statements are not allowed'], 'query': ' \\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND Department LIKE \\'%Computer Science%\\' AND \"New/Repeat\" IS NULL; \\n\\nHowever, since New/Repeat is not supposed to be used in queries according to the prompt, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND Department LIKE \\'%Computer Science%\\'; \\n\\nHowever, considering the table schema, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND Department LIKE \\'%Computer Science%\\'; \\n\\nHowever, this query may not be accurate because it does not account for the case where the department is \\'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)\\'. Therefore, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND (Department LIKE \\'%Computer Science%\\' OR Department LIKE \\'%Computer Networks and Cybersecurity%\\'); \\n\\nHowever, this query may still not be accurate because it does not account for the case where the department is \\'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)\\' and the program is \\'Bachelor of Science\\'. Therefore, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND Department LIKE \\'%Computer Science (CS), Computer Networks and Cybersecurity (CNCS)%\\'; \\n\\nHowever, this query may still not be accurate because it does not account for the case where the department is \\'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)\\' and the program is \\'Bachelor of Science\\' and the department name may not be exact. Therefore, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND Department LIKE \\'%Computer Science%\\' AND Department LIKE \\'%Computer Networks and Cybersecurity%\\'; \\n\\nHowever, the query is still not accurate because it requires the department to have both \\'Computer Science\\' and \\'Computer Networks and Cybersecurity\\' which may not be the case. Therefore, the query should be revised to:\\n\\nSELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Program LIKE \\'%Bachelor of Science%\\' AND (Department LIKE \\'%Computer Science%\\' OR Department LIKE \\'%Computer Networks and Cybersecurity%\\'); \\n\\nHowever, this query may still not be accurate because', 'result': None}\n",
"\n",
"Restricted Query Result:\n",
"{'success': True, 'error': None, 'query': \" \\nSELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';\", 'result': ' Dr. Qu is teaching Introduction to Data Science, Data Structures, Data Mining, Computational Foundation for Data Science, Data Mining for Business, and Computer Vision and Natural Language Processing in Spring 2025.'}\n"
]
}
],
"source": [
"# Initialize the safe executor\n",
"safe_executor = SafeQueryExecutor(db, complete_chain)\n",
"\n",
"# Example queries\n",
"def test_queries():\n",
" # Valid query\n",
" result1 = safe_executor.execute_safe_query(\"Which courses are available in the Data Science department for Spring 2025?\")\n",
" print(\"\\nValid Query Result:\")\n",
" print(result1)\n",
" \n",
" # Invalid query with SQL injection attempt\n",
" result2 = safe_executor.execute_safe_query(\"\"\"What are the details of the course ‘Introduction to Python’?\"\"\")\n",
" print(\"\\nInvalid Query Result:\")\n",
" print(result2)\n",
" \n",
" # Query with restricted words\n",
" result3 = safe_executor.execute_safe_query(\"How many courses are offered under the Computer Science (Bachelor of Science) program?\")\n",
" print(\"\\nRestricted Query Result:\")\n",
" print(result3)\n",
"\n",
" # Query with restricted words\n",
" result4 = safe_executor.execute_safe_query(\"Show me the courses taught by Dr. Qu in Spring 2025.\")\n",
" print(\"\\nRestricted Query Result:\")\n",
" print(result4)\n",
" \n",
"# Run test queries\n",
"test_queries()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"result1 = safe_executor.execute_safe_query(\"DROP TABLE courses;\")\n",
"result1"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "COS243",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|