Spaces:
Sleeping
Sleeping
File size: 11,715 Bytes
e03e6d4 c1915cc e03e6d4 554f05c c1915cc e03e6d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from langchain_community.utilities import SQLDatabase
from langchain_community.llms import DeepInfra
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import re
from typing import Dict, List
import os
from dotenv import load_dotenv
load_dotenv()
api = os.getenv("DEEPINFRA_TOKEN")
deepinfra_model = "meta-llama/Llama-3.3-70B-Instruct"
llm = DeepInfra(model_id=deepinfra_model,
deepinfra_api_token=api)
# Initialize database connection
db = SQLDatabase.from_uri("sqlite:///Spring_2025_courses.db", sample_rows_in_table_info=0)
# Helper functions
def get_schema(_):
"""Retrieve database schema"""
return db.get_table_info()
def run_query(query):
"""Execute SQL query"""
return db.run(query)
# SQL generation prompt
system_prompt = """
You are a SQLite expert. Given an input question, create one syntactically correct SQLite query to run. Generate only one query. No pre-amble.
Here is the relevant table information:
schema: {schema}
Departments: 'Applied Math & Statistics', 'ART', 'Biomedical Science (BMS)', 'Computer Science (CS), Computer Networks and Cybersecurity (CNCS)', 'Data Science (DS)', 'Dance', 'General Education (GE)'
New/Repeat: Have no values (Don't use New/Repeat in queries)
Tips:
- Use LIKE instead of = in the queries
Below are a number of examples of questions and their corresponding SQL queries.
example 1:
Question:List all departments.
SQL query:SELECT Department FROM Spring_2025_courses;
example 2:
Question:Find all classes that are taught by Dr. Qu.
SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';
example 3:
Question:List all courses in the Data Science department.
SQL query:SELECT CourseCode, CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';
example 4:
Question:Find the total number of courses offered for Spring 2025.
SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses;
example 5:
Question:List all professors from Biomed Department.
SQL query:SELECT Instructor FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';
example 6:
Question:Which courses are available in the Biomed department for Spring 2025?
SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Biomed%';
example 7:
Question:How many courses are offered under the Arts Management (BFA) program?
SQL query:SELECT COUNT(CourseCode) FROM Spring_2025_courses WHERE Department LIKE Program LIKE '%BFA%'
example 8:
Question:Which courses are available for the Master of Science in Applied Math?
SQL query:SELECT CourseTitle FROM Spring_2025_courses WHERE Program LIKE '%Master of Science%' AND Department LIKE '%Applied Math%';
Write only one SQLite query that would answer the user's question. No pre-amble.
"""
human_prompt = """Based on the table schema below, write a SQL query that would answer the user's question:
{schema}
Question: {question}
SQL Query:"""
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
("human", human_prompt),
])
# Build query generation chain
sql_generator = (
RunnablePassthrough.assign(schema=get_schema)
| prompt
| llm.bind(stop=["\nSQLResult:"])
| StrOutputParser()
)
# Natural language response generation
nl_system_prompt = """Given an input question and SQL response, convert it to a natural language answer.
Below are a number of examples of questions and their corresponding SQL queries.
example 1:
Question: Which courses are available in the Data Science department?
SQL Query: SELECT CourseTitle FROM Spring_2025_courses WHERE Department LIKE '%Data Science%';
SQL Response: [('Introduction to Data Science',), ('Career Development in Data Science',), ('Data Structures',), ('Data Visualization',), ('Data Inference',), ('Data Mining',), ('Big Data Engineering',), ('Independent Study for Data Science',), ('Senior Project',), ('Mathematical Foundation for Data Science (Online)',), ('Computational Foundation for Data Science (Online)',), ('Probability for Data Science (Online)',), ('Exploratory Data Analysis and Visualization',), ('Modern Applied Statistical Learning',), ('Data Mining for Business',), ('Big Data and Data Engineering',), ('Design and Analysis of Experiments',), ('Design and Analysis of Experiments',), ('Computer Vision and Natural Language Processing (Independent Study)',), ('Capstone Project',)]
Response: The available courses in the Data Science department are Introduction to Data Science, Career Development in Data Science, Data Structures, Data Visualization, Data Inference, Data Mining, Big Data Engineering, Independent Study for Data Science, Senior Project, Mathematical Foundation for Data Science, Computational Foundation for Data Science, Probability for Data Science, Exploratory Data Analysis and Visualization, Modern Applied Statistical Learning, Data Mining for Business, Big Data and Data Engineering, Design and Analysis of Experiments, and Capstone Project.
example 2:
Question: Find all classes that are taught by Dr. Qu.
SQL Query: SELECT CourseTitle FROM Spring_2025_courses WHERE Instructor LIKE '%Qu%';
SQL Response: [('Introduction to Data Science',), ('Data Structures',), ('Data Mining',), ('Computational Foundation for Data Science (Online)',), ('Data Mining for Business',), ('Computer Vision and Natural Language Processing (Independent Study)',)]
Response: Dr. Qu is teaching Introduction to Data Science, Data Structures, Data Mining, Computational Foundation for Data Science, Data Mining for Business, and Computer Vision and Natural Language Processing.
Generate only ONE answer based on the SQL response. No pre-amble.
"""
response_prompt = """Based on the table schema below, question, sql query, and sql response, write a natural language response. No pre-amble:
{schema}
Question:{question}
SQL Query:{query}
SQL Response:{response}
Response:"""
nl_prompt = ChatPromptTemplate.from_messages([
("system", nl_system_prompt),
("human", response_prompt),
])
# Complete chain with natural language output
complete_chain = (
RunnablePassthrough.assign(query=sql_generator)
| RunnablePassthrough.assign(
schema=get_schema,
response=lambda x: db.run(x['query']),
)
| nl_prompt
| llm
)
class InputValidator:
"""Input validation and sanitization for database queries"""
RESTRICTED_WORDS = {
'delete', 'drop', 'truncate', 'update', 'insert',
'alter', 'create', 'replace', 'modify', 'grant'
}
ALLOWED_TABLES = ['spring_2025_courses']
def __init__(self):
self.error_messages = []
def validate_question(self, question: str) -> bool:
"""
Validate a natural language question
Args:
question (str): User's input question
Returns:
bool: True if valid, False otherwise
"""
self.error_messages = []
# Check if question is empty or too long
if not question or not question.strip():
self.error_messages.append("Question cannot be empty")
return False
if len(question) > 500:
self.error_messages.append("Question is too long (max 500 characters)")
return False
# Check for basic SQL injection attempts
question_lower = question.lower()
if any(word in question_lower for word in self.RESTRICTED_WORDS):
self.error_messages.append("Question contains restricted keywords")
return False
# Check for excessive special characters
if re.search(r'[;{}\\]', question):
self.error_messages.append("Question contains invalid characters")
return False
return True
def get_error_messages(self) -> List[str]:
"""Get all error messages from validation"""
return self.error_messages
class QueryValidator:
"""Validate generated SQL queries before execution"""
def __init__(self, db_connection):
self.db = db_connection
self.error_messages = []
def get_error_messages(self) -> List[str]:
"""Get all error messages from validation"""
return self.error_messages
def validate_sql(self, sql: str) -> bool:
"""Validate generated SQL query"""
sql_lower = sql.lower()
# Check if query is read-only (SELECT only)
if not sql_lower.strip().startswith('select'):
self.error_messages.append("Only SELECT queries are allowed")
return False
# Check for multiple statements
if ';' in sql[:-1]: # Allow semicolon at the end
self.error_messages.append("Multiple SQL statements are not allowed")
return False
# Validate table names
table = self._extract_table_names(sql_lower)
if table not in InputValidator.ALLOWED_TABLES:
self.error_messages.append("Query contains invalid table names")
return False
return True
def _extract_table_names(self, sql: str) -> str:
"""Extract table names from SQL query"""
from_matches = re.findall(r'from\s+([a-zA-Z_][a-zA-Z0-9_]*)', sql.lower())
return from_matches[0]
class SafeQueryExecutor:
"""Safe execution of natural language queries"""
def __init__(self, db_connection, llm_chain):
self.input_validator = InputValidator()
self.query_validator = QueryValidator(db_connection)
self.db = db_connection
self.chain = llm_chain
def execute_safe_query(self, question: str) -> Dict:
"""
Safely execute a natural language query
Args:
question (str): User's natural language question
Returns:
dict: Query result and status
"""
# Validate input
if not self.input_validator.validate_question(question):
return {
'success': False,
'error': self.input_validator.get_error_messages(),
'query': None,
'result': None
}
try:
# Generate SQL query
sql_query = sql_generator.invoke({"question": question})
# Validate generated SQL
if not self.query_validator.validate_sql(sql_query):
return {
'success': False,
'error': self.query_validator.get_error_messages(),
'query': sql_query,
'result': None
}
# Execute query
result = complete_chain.invoke({"question": question})
return {
'success': True,
'error': None,
'query': sql_query,
'result': result
}
except Exception as e:
return {
'success': False,
'error': [str(e)],
'query': None,
'result': None
}
# Initialize the safe executor
safe_executor = SafeQueryExecutor(db, complete_chain)
# Example queries
example_queries = [
"Which courses are available in the Data Science department for Spring 2025?",
"What are the details of the course 'Introduction to Python'?",
"How many courses are offered under the Computer Science (Bachelor of Science) program?",
"Show me the courses taught by Dr. Qu in Spring 2025."
] |