from fontTools.ttLib.ttGlyphSet import LerpGlyphSet from fontTools.pens.basePen import AbstractPen, BasePen, DecomposingPen from fontTools.pens.pointPen import AbstractPointPen, SegmentToPointPen from fontTools.pens.recordingPen import RecordingPen, DecomposingRecordingPen from fontTools.misc.transform import Transform from collections import defaultdict, deque from math import sqrt, copysign, atan2, pi from enum import Enum import itertools import logging log = logging.getLogger("fontTools.varLib.interpolatable") class InterpolatableProblem: NOTHING = "nothing" MISSING = "missing" OPEN_PATH = "open_path" PATH_COUNT = "path_count" NODE_COUNT = "node_count" NODE_INCOMPATIBILITY = "node_incompatibility" CONTOUR_ORDER = "contour_order" WRONG_START_POINT = "wrong_start_point" KINK = "kink" UNDERWEIGHT = "underweight" OVERWEIGHT = "overweight" severity = { MISSING: 1, OPEN_PATH: 2, PATH_COUNT: 3, NODE_COUNT: 4, NODE_INCOMPATIBILITY: 5, CONTOUR_ORDER: 6, WRONG_START_POINT: 7, KINK: 8, UNDERWEIGHT: 9, OVERWEIGHT: 10, NOTHING: 11, } def sort_problems(problems): """Sort problems by severity, then by glyph name, then by problem message.""" return dict( sorted( problems.items(), key=lambda _: -min( ( (InterpolatableProblem.severity[p["type"]] + p.get("tolerance", 0)) for p in _[1] ), ), reverse=True, ) ) def rot_list(l, k): """Rotate list by k items forward. Ie. item at position 0 will be at position k in returned list. Negative k is allowed.""" return l[-k:] + l[:-k] class PerContourPen(BasePen): def __init__(self, Pen, glyphset=None): BasePen.__init__(self, glyphset) self._glyphset = glyphset self._Pen = Pen self._pen = None self.value = [] def _moveTo(self, p0): self._newItem() self._pen.moveTo(p0) def _lineTo(self, p1): self._pen.lineTo(p1) def _qCurveToOne(self, p1, p2): self._pen.qCurveTo(p1, p2) def _curveToOne(self, p1, p2, p3): self._pen.curveTo(p1, p2, p3) def _closePath(self): self._pen.closePath() self._pen = None def _endPath(self): self._pen.endPath() self._pen = None def _newItem(self): self._pen = pen = self._Pen() self.value.append(pen) class PerContourOrComponentPen(PerContourPen): def addComponent(self, glyphName, transformation): self._newItem() self.value[-1].addComponent(glyphName, transformation) class SimpleRecordingPointPen(AbstractPointPen): def __init__(self): self.value = [] def beginPath(self, identifier=None, **kwargs): pass def endPath(self) -> None: pass def addPoint(self, pt, segmentType=None): self.value.append((pt, False if segmentType is None else True)) def vdiff_hypot2(v0, v1): s = 0 for x0, x1 in zip(v0, v1): d = x1 - x0 s += d * d return s def vdiff_hypot2_complex(v0, v1): s = 0 for x0, x1 in zip(v0, v1): d = x1 - x0 s += d.real * d.real + d.imag * d.imag # This does the same but seems to be slower: # s += (d * d.conjugate()).real return s def matching_cost(G, matching): return sum(G[i][j] for i, j in enumerate(matching)) def min_cost_perfect_bipartite_matching_scipy(G): n = len(G) rows, cols = linear_sum_assignment(G) assert (rows == list(range(n))).all() # Convert numpy array and integer to Python types, # to ensure that this is JSON-serializable. cols = list(int(e) for e in cols) return list(cols), matching_cost(G, cols) def min_cost_perfect_bipartite_matching_munkres(G): n = len(G) cols = [None] * n for row, col in Munkres().compute(G): cols[row] = col return cols, matching_cost(G, cols) def min_cost_perfect_bipartite_matching_bruteforce(G): n = len(G) if n > 6: raise Exception("Install Python module 'munkres' or 'scipy >= 0.17.0'") # Otherwise just brute-force permutations = itertools.permutations(range(n)) best = list(next(permutations)) best_cost = matching_cost(G, best) for p in permutations: cost = matching_cost(G, p) if cost < best_cost: best, best_cost = list(p), cost return best, best_cost try: from scipy.optimize import linear_sum_assignment min_cost_perfect_bipartite_matching = min_cost_perfect_bipartite_matching_scipy except ImportError: try: from munkres import Munkres min_cost_perfect_bipartite_matching = ( min_cost_perfect_bipartite_matching_munkres ) except ImportError: min_cost_perfect_bipartite_matching = ( min_cost_perfect_bipartite_matching_bruteforce ) def contour_vector_from_stats(stats): # Don't change the order of items here. # It's okay to add to the end, but otherwise, other # code depends on it. Search for "covariance". size = sqrt(abs(stats.area)) return ( copysign((size), stats.area), stats.meanX, stats.meanY, stats.stddevX * 2, stats.stddevY * 2, stats.correlation * size, ) def matching_for_vectors(m0, m1): n = len(m0) identity_matching = list(range(n)) costs = [[vdiff_hypot2(v0, v1) for v1 in m1] for v0 in m0] ( matching, matching_cost, ) = min_cost_perfect_bipartite_matching(costs) identity_cost = sum(costs[i][i] for i in range(n)) return matching, matching_cost, identity_cost def points_characteristic_bits(points): bits = 0 for pt, b in reversed(points): bits = (bits << 1) | b return bits _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR = 4 def points_complex_vector(points): vector = [] if not points: return vector points = [complex(*pt) for pt, _ in points] n = len(points) assert _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR == 4 points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1]) while len(points) < _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR: points.extend(points[: _NUM_ITEMS_PER_POINTS_COMPLEX_VECTOR - 1]) for i in range(n): # The weights are magic numbers. # The point itself p0 = points[i] vector.append(p0) # The vector to the next point p1 = points[i + 1] d0 = p1 - p0 vector.append(d0 * 3) # The turn vector p2 = points[i + 2] d1 = p2 - p1 vector.append(d1 - d0) # The angle to the next point, as a cross product; # Square root of, to match dimentionality of distance. cross = d0.real * d1.imag - d0.imag * d1.real cross = copysign(sqrt(abs(cross)), cross) vector.append(cross * 4) return vector def add_isomorphisms(points, isomorphisms, reverse): reference_bits = points_characteristic_bits(points) n = len(points) # if points[0][0] == points[-1][0]: # abort if reverse: points = points[::-1] bits = points_characteristic_bits(points) else: bits = reference_bits vector = points_complex_vector(points) assert len(vector) % n == 0 mult = len(vector) // n mask = (1 << n) - 1 for i in range(n): b = ((bits << (n - i)) & mask) | (bits >> i) if b == reference_bits: isomorphisms.append( (rot_list(vector, -i * mult), n - 1 - i if reverse else i, reverse) ) def find_parents_and_order(glyphsets, locations): parents = [None] + list(range(len(glyphsets) - 1)) order = list(range(len(glyphsets))) if locations: # Order base master first bases = (i for i, l in enumerate(locations) if all(v == 0 for v in l.values())) if bases: base = next(bases) logging.info("Base master index %s, location %s", base, locations[base]) else: base = 0 logging.warning("No base master location found") # Form a minimum spanning tree of the locations try: from scipy.sparse.csgraph import minimum_spanning_tree graph = [[0] * len(locations) for _ in range(len(locations))] axes = set() for l in locations: axes.update(l.keys()) axes = sorted(axes) vectors = [tuple(l.get(k, 0) for k in axes) for l in locations] for i, j in itertools.combinations(range(len(locations)), 2): graph[i][j] = vdiff_hypot2(vectors[i], vectors[j]) tree = minimum_spanning_tree(graph) rows, cols = tree.nonzero() graph = defaultdict(set) for row, col in zip(rows, cols): graph[row].add(col) graph[col].add(row) # Traverse graph from the base and assign parents parents = [None] * len(locations) order = [] visited = set() queue = deque([base]) while queue: i = queue.popleft() visited.add(i) order.append(i) for j in sorted(graph[i]): if j not in visited: parents[j] = i queue.append(j) except ImportError: pass log.info("Parents: %s", parents) log.info("Order: %s", order) return parents, order def transform_from_stats(stats, inverse=False): # https://cookierobotics.com/007/ a = stats.varianceX b = stats.covariance c = stats.varianceY delta = (((a - c) * 0.5) ** 2 + b * b) ** 0.5 lambda1 = (a + c) * 0.5 + delta # Major eigenvalue lambda2 = (a + c) * 0.5 - delta # Minor eigenvalue theta = atan2(lambda1 - a, b) if b != 0 else (pi * 0.5 if a < c else 0) trans = Transform() if lambda2 < 0: # XXX This is a hack. # The problem is that the covariance matrix is singular. # This happens when the contour is a line, or a circle. # In that case, the covariance matrix is not a good # representation of the contour. # We should probably detect this earlier and avoid # computing the covariance matrix in the first place. # But for now, we just avoid the division by zero. lambda2 = 0 if inverse: trans = trans.translate(-stats.meanX, -stats.meanY) trans = trans.rotate(-theta) trans = trans.scale(1 / sqrt(lambda1), 1 / sqrt(lambda2)) else: trans = trans.scale(sqrt(lambda1), sqrt(lambda2)) trans = trans.rotate(theta) trans = trans.translate(stats.meanX, stats.meanY) return trans