Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
import gradio as gr
|
6 |
+
from threading import Thread
|
7 |
+
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
|
12 |
+
model_id = "vikhyat/moondream2"
|
13 |
+
revision = "2024-04-02"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
15 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_id, trust_remote_code=True, revision=revision,
|
17 |
+
torch_dtype=torch.float32
|
18 |
+
)
|
19 |
+
moondream.eval()
|
20 |
+
|
21 |
+
@spaces.GPU(duration=10)
|
22 |
+
def answer_question(images, prompts):
|
23 |
+
image_embeds = [moondream.encode_image(img) for img in images]
|
24 |
+
image_embeds = torch.cat(image_embeds, dim=0)
|
25 |
+
answers = moondream.batch_answer(
|
26 |
+
images=image_embeds,
|
27 |
+
prompts=prompts,
|
28 |
+
tokenizer=tokenizer
|
29 |
+
)
|
30 |
+
return [answer for answer in answers]
|
31 |
+
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.Markdown(
|
34 |
+
"""
|
35 |
+
# π moondream2
|
36 |
+
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
|
37 |
+
"""
|
38 |
+
)
|
39 |
+
with gr.Row():
|
40 |
+
prompts = gr.Textbox(label="Input", placeholder="Type here...", scale=4)
|
41 |
+
submit = gr.Button("Submit")
|
42 |
+
with gr.Row():
|
43 |
+
images = gr.Image(type="pil", label="Upload Images", multiple=True)
|
44 |
+
output = gr.Textbox(label="Response", multiple=True)
|
45 |
+
submit.click(answer_question, [images, prompts], output)
|
46 |
+
prompts.submit(answer_question, [images, prompts], output)
|
47 |
+
|
48 |
+
demo.queue().launch()
|