Upload gradio_chat_app.py
Browse files- gradio_chat_app.py +41 -0
gradio_chat_app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Load CSV file
|
7 |
+
def load_csv(file_path):
|
8 |
+
# Load the CSV file into a DataFrame
|
9 |
+
return pd.read_csv(file_path)
|
10 |
+
|
11 |
+
# Placeholder for the LLM pipeline
|
12 |
+
def llm_pipeline(prompt):
|
13 |
+
# This function should be filled with the logic to process the prompt using an LLM.
|
14 |
+
# For example, using OpenAI's GPT-3 or GPT-4 model.
|
15 |
+
return "Response from LLM based on the prompt: " + prompt
|
16 |
+
|
17 |
+
# Placeholder for querying against CSV
|
18 |
+
def query_csv(query, df):
|
19 |
+
# This function should contain the logic for querying the DataFrame.
|
20 |
+
# For example, using natural language processing techniques.
|
21 |
+
return "Queried response based on CSV data."
|
22 |
+
|
23 |
+
# Gradio interface function
|
24 |
+
def chat_with_llm(prompt, file_path):
|
25 |
+
df = load_csv(file_path)
|
26 |
+
response = llm_pipeline(prompt)
|
27 |
+
query_response = query_csv(prompt, df)
|
28 |
+
return response + "\n\n" + query_response
|
29 |
+
|
30 |
+
# Define the Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=chat_with_llm,
|
33 |
+
inputs=[gr.inputs.Textbox(label="Your Prompt"), gr.inputs.File(label="CSV File")],
|
34 |
+
outputs=gr.outputs.Textbox(label="Response"),
|
35 |
+
title="Chat with LLM and Query CSV",
|
36 |
+
description="A chat interface to interact with a language model and query a CSV file."
|
37 |
+
)
|
38 |
+
|
39 |
+
# Run the interface
|
40 |
+
if __name__ == "__main__":
|
41 |
+
iface.launch()
|