import gradio as gr from transformers import pipeline bloom_model_name = "CreitinGameplays/bloom-3b-conversational" # Create a pipeline for text generation generator = pipeline("text-generation", model=bloom_model_name, truncation=True) def conversation(prompt="", max_tokens=128): """ Generates conversation response using Bloom with Hugging Face Transformers. Args: prompt (str, optional): Text prompt for Bloom. Defaults to "". max_tokens (int, optional): Maximum number of tokens for response generation. Defaults to 128. Returns: str: Bloom's generated response to the prompt. """ try: # Generate response using Bloom text-generation pipeline response = generator(prompt, max_length=max_tokens, num_return_sequences=1)[0]["generated_text"] return response.strip() # Remove potential leading/trailing whitespace except Exception as e: print(f"Error during Bloom interaction: {e}") return "Bloom is currently unavailable. Try again later!" interface = gr.Interface( fn=conversation, inputs=[ gr.Textbox(label="Text Prompt", value="<|system|> You are a helpful AI assistant <|prompter|> What is an AI? <|assistant|>"), gr.Slider(minimum=1, maximum=1024, label="Max New Tokens", value=128), ], outputs=gr.Textbox(label="AI Assistant Response"), # Textbox for the response title="Bloom 3b Conversational Assistant", description="Talk to Bloom 3b using a text prompt and adjust the maximum number tokens for response generation.", ) interface.launch() # This is a placeholder function, replace with your Bloom 3b interaction code def generate_response_from_bloom3b(prompt, max_tokens): # Implement your Bloom 3b interaction logic here # Use libraries like transformers to call Bloom 3b and process the response # ... # Return the generated response as a string return "This is a placeholder response from generate_response_from_bloom3b"