ConvAIChat / app.py
CreitinGameplays's picture
Update app.py
2136c56 verified
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "8000"))
DESCRIPTION = """\
# ConvAI 9b v2 Chat
"""
# Load model with appropriate device configuration
def load_model():
model_id = "CreitinGameplays/dumbbot"
device = "cuda" if torch.cuda.is_available() else "cpu"
# If using CPU, load in 32-bit to avoid potential issues with 16-bit operations
if device == "cpu":
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side='left')
tokenizer.use_default_system_prompt = False
return model, tokenizer, device
model, tokenizer, device = load_model()
system_prompt_text = "You are Ricardinho."
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str = system_prompt_text,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 1.0,
top_k: int = 0,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6, value=system_prompt_text),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
),
gr.Slider(
label="Top-k",
minimum=0,
maximum=1000,
step=1,
value=0,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=10).launch(show_error=True)