import json import sys from argparse import Namespace import torch import os def load_hyperparam(default_args): """ Load arguments form argparse and config file Priority: default options < config file < command line args """ with open(default_args.config_path, mode="r", encoding="utf-8") as f: config_args_dict = json.load(f) default_args_dict = vars(default_args) command_line_args_dict = {k: default_args_dict[k] for k in [ a[2:] for a in sys.argv if (a[:2] == "--" and "local_rank" not in a) ]} default_args_dict.update(config_args_dict) default_args_dict.update(command_line_args_dict) args = Namespace(**default_args_dict) return args def _load_state_dict_into_model(model_to_load, model_path, start_prefix=""): # Convert old format to new format if needed from a PyTorch state_dict # copy state_dict so _load_from_state_dict can modify it state_dict = torch.load(model_path, map_location="cpu") metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() state_dict['target.lm.weight'] = state_dict['target.lm.output_layer.weight'] del state_dict['target.lm.output_layer.weight'] state_dict['embedding.embedding.weight'] = state_dict['embedding.word.embedding.weight'] del state_dict['embedding.word.embedding.weight'] if metadata is not None: metadata['embedding.embedding'] = metadata['embedding.word.embedding'] metadata['target.lm'] = metadata['target.lm.output_layer'] if metadata.get('embedding.dropout', None) is not None: del metadata['embedding.dropout'] del metadata['embedding.word'] del metadata['embedding.word.embedding'] del metadata['target.lm.output_layer'] del metadata['target.lm.softmax'] del metadata['target.lm.criterion'] state_dict._metadata = metadata error_msgs = [] # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants # so we need to apply the function recursively. def load(module, state_dict, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) args = (state_dict, prefix, local_metadata, True, [], [], error_msgs) # Parameters of module and children will start with prefix. We can exit early if there are none in this # state_dict if len([key for key in state_dict if key.startswith(prefix)]) > 0: import deepspeed # In sharded models, each shard has only part of the full state_dict, so only gather # parameters that are in the current state_dict. named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False)) params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters] if len(params_to_gather) > 0: # because zero3 puts placeholders in model params, this context # manager gathers (unpartitions) the params of the current layer, then loads from # the state dict and then re-partitions them again with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0): if torch.distributed.get_rank() == 0: module._load_from_state_dict(*args) for name, child in module._modules.items(): if child is not None: load(child, state_dict, prefix + name + ".") load(model_to_load, state_dict, prefix=start_prefix) # Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so # it's safe to delete it. del state_dict return model_to_load def convert_normal_parameter_to_int8(model, threshold=6.0, modules_to_not_convert=None, current_key_name=None): import bitsandbytes as bnb modules_to_not_convert = ["lm"] if modules_to_not_convert is None else modules_to_not_convert for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if len(list(module.children())) > 0: convert_normal_parameter_to_int8(module, threshold, modules_to_not_convert, current_key_name) if isinstance(module, bnb.nn.Linear8bitLt) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(current_key_name) for key in modules_to_not_convert): model._modules[name].weight = bnb.nn.Int8Params( module.weight.data, requires_grad=False, has_fp16_weights=False ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) # Remove the last key for recursion current_key_name.pop(-1) return model def load_model(model, model_path): if os.path.isdir(model_path): index_filename = os.path.join(model_path, 'pytorch_model.bin.index.json') with open(index_filename, "r") as f: index = json.loads(f.read()) shard_filenames = sorted(set(index["weight_map"].values())) shard_filenames = [os.path.join(model_path, f) for f in shard_filenames] for shard_file in shard_filenames: shard_checkpoint = torch.load(shard_file, map_location='cpu') for name, parameter in model.named_parameters(): if shard_checkpoint.get(name, None) is not None: if 'target' in name: parameter.data = shard_checkpoint['target.lm.output_layer.weight'] elif 'embedding' in name: parameter.data = shard_checkpoint['embedding.word.embedding.weight'] else: parameter.data = shard_checkpoint[name] parameter.requires_grad = False del shard_checkpoint else: checkpoint = torch.load(model_path, map_location='cpu') for parameter_name, parameter in model.named_parameters(): if 'target' in parameter_name: parameter.data = checkpoint['target.lm.output_layer.weight'] elif 'embedding' in parameter_name: parameter.data = checkpoint['embedding.word.embedding.weight'] else: parameter.data = checkpoint[parameter_name] parameter.requires_grad = False del checkpoint return model