File size: 5,851 Bytes
4d699ee
 
 
 
b89ad87
 
4d699ee
 
b89ad87
4d699ee
 
 
 
 
 
 
8e39e50
2b02718
b89ad87
4d699ee
 
 
 
b89ad87
 
 
4d699ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89ad87
4d699ee
b89ad87
 
4d699ee
 
 
 
 
 
 
 
 
 
 
1103a2c
4d699ee
 
 
b89ad87
4d699ee
 
 
 
 
 
8e39e50
e7d4e05
4d699ee
 
2a059e9
4d699ee
 
 
 
 
 
 
 
 
 
 
 
b89ad87
 
4d699ee
 
 
 
 
 
b89ad87
 
4d699ee
 
 
 
 
b89ad87
4d699ee
 
 
 
 
 
 
 
 
b89ad87
 
 
 
 
 
 
 
 
4d699ee
 
 
 
b89ad87
 
4d699ee
 
 
b89ad87
4d699ee
b89ad87
4d699ee
 
 
 
 
 
 
b89ad87
4d699ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894b31
4d699ee
b89ad87
4d699ee
 
 
 
 
 
b89ad87
 
4d699ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5325b85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import random
import uuid

import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import (
    StableDiffusionXLPipeline, 
    KDPM2AncestralDiscreteScheduler,
    AutoencoderKL
)
DESCRIPTION = """
# Mobius

a diffusion model that pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing a brand new constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch.

Model by [Corcel.io](https://huggingface.co/Corcelio/mobius)
"""
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo may not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max

USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


vae = AutoencoderKL.from_pretrained(
    "madebyollin/sdxl-vae-fp16-fix", 
    torch_dtype=torch.float16
)

# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    "Corcelio/mobius", 
    vae=vae,
    torch_dtype=torch.float16,
)
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU(enable_queue=True)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 7,
    randomize_seed: bool = False,
    progress=gr.Progress(track_tqdm=True),
):
    
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))

    if not use_negative_prompt:
        negative_prompt = ""  # type: ignore
    images = pipe(
        prompt=f'''{prompt}''',
        negative_prompt=f"{negative_prompt}",     
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=50,
        num_images_per_prompt=1,
        output_type="pil",
        clip_skip=3,
    ).images

    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

        


examples = [
    "a cat wearing sunglasses in the summer",
    "mystery",
    "an astronaut riding a horse on the moon",
    "anime boy, protagonist,",
    "A tiny robot taking a break under a tree in the garden",
    "if I could turn back time"
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
with gr.Blocks(title="Mobius", css=css) as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=False,
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=6,
                lines=4,
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:0.25)",
                placeholder="Enter a negative prompt",
                visible=True,
            )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
            visible=True
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="Width",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=512,
                maximum=2048,
                step=8,
                value=1024,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=20,
                step=0.1,
                value=3.5,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=False,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )
    

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )
    
if __name__ == "__main__":
    demo.queue(max_size=20).launch(show_api=True, debug=False)