davidfearne commited on
Commit
0fa1995
·
verified ·
1 Parent(s): c222558

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -25
app.py CHANGED
@@ -9,29 +9,16 @@ import requests
9
  from pydantic import BaseModel, Field
10
  from typing import Optional
11
 
12
- placeHolderPersona1 = """##Mission
13
- Please use the Conversation Summary and the Follow Up Question to create a highly targeted query for a semantic search engine. The query must represent the follow up question in the context of the conversation to date. Use the conversation summary to guide your thinking.
14
- You will be given the converstaion to date in the user prompt
 
 
15
 
16
  ##Rules
17
  Ensure the query is concise
18
- Ensure the query has keywords from the Conversation Summary embedding within it such as the technical details from the summary
19
- If the Conversation Summary mentions a product like a 'loadcell' or 'hoist' or specific version of lift or moving walkway like 'Skyrise' or 'Gen2' then please use this in the query.
20
- Do not respond with anything other than the query for the Semantic Search Engine."""
21
-
22
- # placeHolderPersona2 = """## Mission
23
- # To analyse a clinical triaging discussion between a patient and AI doctor interactions with a focus on Immunology symptoms, medical history, and test results to deduce the most probable Immunology diagnosis.
24
-
25
- # ## Diagnostic Process
26
- # Upon receipt of the clinical notes, I will follow a systematic approach to arrive at a diagnosis:
27
- # 1. Review the patient's presenting symptoms and consider their relevance to immunopathology.
28
- # 2. Cross-reference the gathered information with my knowledge base of immunology to identify patterns or indicators of specific immune disorders.
29
- # 3. Formulate a diagnosis from the potential conditions.
30
- # 4. Determine the most likely diagnosis and assign a confidence score from 1-100, with 100 being absolute certainty.
31
-
32
- # # Limitations
33
- # While I am specialized in immunology, I understand that not all cases will fall neatly within my domain. In instances where the clinical notes point to a condition outside of my expertise, I will provide the best possible diagnosis with the acknowledgment that my confidence score will reflect the limitations of my specialization in those cases"""
34
-
35
 
36
  class ChatRequestClient(BaseModel):
37
 
@@ -101,14 +88,14 @@ st.sidebar.caption(f"Session ID: {genuuid()}")
101
 
102
 
103
  # Main chat interface
104
- st.header("Chat with the Agents")
105
 
106
  # User ID Input
107
- user_id = st.text_input("User ID:", key="user_id")
108
 
109
  # Ensure user_id is defined or fallback to a default value
110
  if not user_id:
111
- st.warning("Please provide a User ID to start the chat.")
112
  else:
113
  # Initialize chat history in session state
114
  if "messages" not in st.session_state:
@@ -120,7 +107,7 @@ else:
120
  st.markdown(message["content"])
121
 
122
  # Collect user input
123
- if user_input := st.chat_input("Write your message here:"):
124
  # Add user message to the chat history
125
  st.session_state.messages.append({"role": "user", "content": user_input})
126
  st.chat_message("user").markdown(user_input)
@@ -157,6 +144,6 @@ else:
157
 
158
  # Display additional metadata
159
  st.caption(f"##### Time taken: {format_elapsed_time(elapsed_time)} seconds")
160
- st.caption(f"##### Question Count: {count} of {numberOfQuestions}")
161
 
162
 
 
9
  from pydantic import BaseModel, Field
10
  from typing import Optional
11
 
12
+ placeHolderPersona1 = """
13
+ ##Mission
14
+ Please create a highly targeted query for a semantic search engine. The query must represent the conversation to date.
15
+ ** You will be given the converstaion to date in the user prompt.
16
+ ** If no converstaion provided then this is the first converstaion
17
 
18
  ##Rules
19
  Ensure the query is concise
20
+ Do not respond with anything other than the query for the Semantic Search Engine.
21
+ Respond with just a plain string """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  class ChatRequestClient(BaseModel):
24
 
 
88
 
89
 
90
  # Main chat interface
91
+ st.header("Test Query Translation")
92
 
93
  # User ID Input
94
+ user_id = st.text_input("Experiment ID:", key="user_id")
95
 
96
  # Ensure user_id is defined or fallback to a default value
97
  if not user_id:
98
+ st.warning("Please provide an experiment ID to start the chat.")
99
  else:
100
  # Initialize chat history in session state
101
  if "messages" not in st.session_state:
 
107
  st.markdown(message["content"])
108
 
109
  # Collect user input
110
+ if user_input := st.chat_input("Start chat:"):
111
  # Add user message to the chat history
112
  st.session_state.messages.append({"role": "user", "content": user_input})
113
  st.chat_message("user").markdown(user_input)
 
144
 
145
  # Display additional metadata
146
  st.caption(f"##### Time taken: {format_elapsed_time(elapsed_time)} seconds")
147
+ # st.caption(f"##### Question Count: {count} of {numberOfQuestions}")
148
 
149