#!/usr/bin/env python from __future__ import annotations import os import random import gradio as gr import numpy as np import PIL.Image import torch from diffusers import DiffusionPipeline DESCRIPTION = '# SD-XL' if not torch.cuda.is_available(): DESCRIPTION += '\n
Running on CPU 🥶 This demo does not work on CPU.
' MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv( 'CACHE_EXAMPLES') == '1' MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024')) USE_TORCH_COMPILE = os.getenv('USE_TORCH_COMPILE') == '1' ENABLE_CPU_OFFLOAD = os.getenv('ENABLE_CPU_OFFLOAD') == '1' ENABLE_REFINER = os.getenv('ENABLE_REFINER', '1') == '1' device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16, use_safetensors=True, variant='fp16') if ENABLE_REFINER: refiner = DiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-xl-refiner-1.0', torch_dtype=torch.float16, use_safetensors=True, variant='fp16') if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() if ENABLE_REFINER: refiner.enable_model_cpu_offload() else: pipe.to(device) if ENABLE_REFINER: refiner.to(device) if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead', fullgraph=True) if ENABLE_REFINER: refiner.unet = torch.compile(refiner.unet, mode='reduce-overhead', fullgraph=True) else: pipe = None refiner = None def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def generate(prompt: str, negative_prompt: str = '', prompt_2: str = '', negative_prompt_2: str = '', use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 50, num_inference_steps_refiner: int = 50, apply_refiner: bool = False) -> PIL.Image.Image: generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore if not use_prompt_2: prompt_2 = None # type: ignore if not use_negative_prompt_2: negative_prompt_2 = None # type: ignore if not apply_refiner: return pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type='pil').images[0] else: latents = pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type='latent').images image = refiner(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_refiner, num_inference_steps=num_inference_steps_refiner, image=latents, generator=generator).images[0] return image examples = [ 'Astronaut in a jungle, cold color palette, muted colors, detailed, 8k', 'An astronaut riding a green horse', ] with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value='Duplicate Space for private use', elem_id='duplicate-button', visible=os.getenv('SHOW_DUPLICATE_BUTTON') == '1') with gr.Group(): with gr.Row(): prompt = gr.Text( label='Prompt', show_label=False, max_lines=1, placeholder='Enter your prompt', container=False, ) run_button = gr.Button('Run', scale=0) result = gr.Image(label='Result', show_label=False) with gr.Accordion('Advanced options', open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label='Use negative prompt', value=False) use_prompt_2 = gr.Checkbox(label='Use prompt 2', value=False) use_negative_prompt_2 = gr.Checkbox(label='Use negative prompt 2', value=False) negative_prompt = gr.Text( label='Negative prompt', max_lines=1, placeholder='Enter a negative prompt', visible=False, ) prompt_2 = gr.Text( label='Prompt 2', max_lines=1, placeholder='Enter your prompt', visible=False, ) negative_prompt_2 = gr.Text( label='Negative prompt 2', max_lines=1, placeholder='Enter a negative prompt', visible=False, ) seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label='Randomize seed', value=True) with gr.Row(): width = gr.Slider( label='Width', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label='Height', minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) apply_refiner = gr.Checkbox(label='Apply refiner', value=False, visible=ENABLE_REFINER) with gr.Row(): guidance_scale_base = gr.Slider(label='Guidance scale for base', minimum=1, maximum=20, step=0.1, value=5.0) num_inference_steps_base = gr.Slider( label='Number of inference steps for base', minimum=10, maximum=100, step=1, value=50) with gr.Row(visible=False) as refiner_params: guidance_scale_refiner = gr.Slider( label='Guidance scale for refiner', minimum=1, maximum=20, step=0.1, value=5.0) num_inference_steps_refiner = gr.Slider( label='Number of inference steps for refiner', minimum=10, maximum=100, step=1, value=50) gr.Examples(examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False, ) use_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False, ) use_negative_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False, ) apply_refiner.change( fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False, ) inputs = [ prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name='run', ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) prompt_2.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) negative_prompt_2.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=inputs, outputs=result, api_name=False, ) demo.queue(max_size=20).launch()